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Conclusions

Theorem
The category DiGraph of directed graphs carries a cofibration
category structure whose weak equivalences are the maps inducing
isomorphisms on the path homology groups defined by
Grigor’yan-Lin-Muranov-Yau.
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Cofibration categories

Definition
A cofibration category is a category C equipped with distinguished
classes of morphisms, called cofibrations (�) and weak
equivalences (

∼−→), satisfying the following axioms (where by an
acyclic cofibration we mean a morphism that is both a cofibration
and a weak equivalence):
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Cofibration categories

(C1) For any object X ∈ C, the identity map idX is an acyclic
cofibration. Both cofibrations and weak equivalences are
closed under composition.

(C2) The class of weak equivalences is closed under the 2-out-of-6
property, i.e., given a triple of composable morphisms
f : X → Y , g : Y → Z , and h : Z →W , if gf and hg are
weak equivalences, then so are f , g , h, and hgf .

• f //

∼
��

•
g

��

∼

��
• h // •
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Cofibration categories

(C3) The category C admits an initial object ∅ and for any object
X ∈ C, the unique map ∅→ X is a cofibration (i.e., all
objects are cofibrant).

(C4) For any object X ∈ C , the codiagonal map X t X → X can
be factored as a cofibration followed by a weak equivalence.

X t X##

##

// X

IX

∼
>>
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Cofibration categories

(C5) The category C admits pushouts along cofibrations. Moreover,
the pushout of an (acyclic) cofibration is an (acyclic)
cofibration.

· //
��

��

·��

��
· // ·
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Cofibration categories

(C6) The category C has small coproducts.

(C7) The transfinite composite of (acyclic) cofibrations is again an
(acyclic) cofibration.
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Cofibration categories vs model categories

This is similar to the definition of a model category, a structure
consisting of cofibrations, weak equivalences, and fibrations.

Model categories present homotopy theories having all small
homotopy limits and colimits. Cofibration categories present
homotopy theories having all small homotopy colimits.

(Note: many sources only use axioms (C1)-(C5) in the definition of
a cofibration category – cofibration categories defined in this way
present homotopy theories with finite homotopy colimits.)

Given a model category M, the full subcategory on its cofibrant
objects is a cofibration category, with cofibrations and weak
equivalences inherited from M.
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Examples of cofibration categories

The Dold cofibration category structure is defined on the category
of all spaces. Its weak equivalences are the homotopy equivalences
and its cofibrations are Dold cofibrations, i.e., maps A� X
satisfying the following weak homotopy extension condition: for
any space S , every commutative square of the form

A //

��

S [0,1]

��
X // S

(where S [0,1] → S is the evaluation map at 0) admits a diagonal
filler making the upper triangle commute strictly and the lower
triangle commute up to a homotopy relative to A. (This
cofibration category structure does not arise from a model
structure, cf. Szumi lo ’14.)
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Examples of cofibration categories

I The Serre model structure on Top induces a cofibration
category structure on the category of retracts of
CW-complexes. Its weak equivalences are weak homotopy
equivalences, i.e., maps inducing isomorphisms on homotopy
groups, and its cofibrations are retracts of CW-inclusions.

I The standard Quillen model structure on simplicial sets
induces a cofibration category of simplicial sets, with
monomorphisms as cofibrations and weak homotopy
equivalences as weak equivalences.
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Examples of cofibration categories

Two cofibration categories describe the homotopy theory of chain
complexes over a unital ring R:

I The injective cofibration category structure defined on all
chain complexes ChinjR , in which weak equivalences are
homology isomorphisms and cofibrations are monomorphisms.

I The projective cofibration category structure defined on chain
complexes of projective R-modules Chproj

R , in which the weak
equivalences are once again the homology isomorphisms and
the cofibrations are monomorphisms with degree-wise
projective cokernels.
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Properties of cofibration categories

Lemma (Factorization Lemma)

Every morphism in a cofibration category can be factored as a
cofibration followed by a weak equivalence.

Lemma (Left Properness)

The pushout of a weak equivalence along a cofibration is again a
weak equivalence.
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Exact functors

Definition
A functor F : C → D between cofibration categories is exact if it
preserves cofibrations, acyclic cofibrations, the initial object,
pushouts along cofibrations, coproducts, and transfinite composites
of cofibrations.

Example

A left Quillen functor between model categories restricts to an
exact functor between their categories of cofibrant objects.
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Path homology

We’ll consider path homology with coefficients in Z, but the same
constructions and results hold for coefficients in any ring.

For a directed graph X and n ≥ 0, we can view Ωn(X ) as a
pullback object:

Ωn(X ) //
� _

��

An−1(X )� _

��
An(X )

∂ // Cn−1(X )

Here Cn(X ),An(X ) respectively denote the free abelian groups on
n-paths and allowed n-paths in X , modulo degenerate paths (e.g.
abbc).
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Cofibrations of directed graphs

Goal: a cofibration category structure on the category DiGraph of
directed graphs, with path homology isomorphisms as the weak
equivalences.

(Morphisms in DiGraph are directed graph maps which can
contract edges – i.e., these are digraphs with all loops.)

What should the cofibrations be?

We’ll consider certain classes of induced subgraph inclusions.
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Projecting decompositions

Given an induced subgraph inclusion A ↪→ X , let XA
V denote the set

of vertices of X admitting paths to A. (In particular, AV ⊆ XA
V ).

A projecting decomposition of X with respect to A is a function
π : XA

V → AV such that for x ∈ XA
V , a ∈ AV , if x admits a path to

a, then there is a path of minimal length from x to a which passes
through πx .

In this situation, πx is the unique vertex of A which is closest to x .
In particular:

I For a ∈ AV , πa = a.

I If x ∈ XV \ AV admits an edge to a vertex a ∈ AV , then
πx = a. In particular, this shows a is unique.

If a given inclusion admits a projecting decomposition, then it is
unique.
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Cofibrations of directed graphs

Definition
A induced subgraph inclusion A� X is a cofibration if both of
the following conditions are satisfied.

I There are no edges out of A in X . I.e., if x ∈ XV \ AV and
a ∈ AV then there is no edge a→ x .

I A� X admits a projecting decomposition.
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Examples of cofibrations

Example

Suppose X is a cone under a digraph G , i.e., XV = GV t {a}, with
an edge x → a for all x ∈ GV . Then {a}� X is a cofibration.

x //

��

y //

��

z

��

G

a

πx = a for all x ∈ XV .
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Suppose X is a cylinder on a graph G , i.e., the box product of G
with I 1 = 0→ 1. Then the inclusion G�{1}� X is a cofibration.

(x , 0) //

��

(y , 0) //

��

(z , 0)

��
(x , 1) // (y , 1) // (z , 1)

π(x , ε) = (x , 1) for all x ∈ GV , ε ∈ {0, 1}.
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Why do we need both conditions?

Suppose we define cofibrations to be all induced subgraph
inclusions A ↪→ X with no edges out of A. Then the inclusion of
edge c → d into this graph X would be a cofibration:

a //

��

b

��
d coo
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Why do we need both conditions?

a //

��

b

��

a //

��

b

��

→

d coo cd

The unique map from • → • to • is a path homology isomorphism.
Its pushout along the inclusion of c → d is a quotient map that
contracts this edge, obtaining the commuting triangle.

But this map is not a homology isomorphism – X has the
homology of S1 while the commuting triangle has trivial homology.
So this proposed “cofibration category” fails left properness.
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Why do we need both conditions?
Suppose we instead define cofibrations to be induced subgraph
inclusions admitting a projecting decomposition. With the same
graph X as previously, consider the inclusion of edge b → c .

a //

��

b

��
d coo

We can define a projecting decomposition by:

πa = b πb = b πc = c

So this would be a cofibration. Again, we can contract this edge to
obtain the commuting triangle, obtaining a contradiction to left
properness.

22 / 36



Why do we need both conditions?
Suppose we instead define cofibrations to be induced subgraph
inclusions admitting a projecting decomposition. With the same
graph X as previously, consider the inclusion of edge b → c .

a //

��

b

��
d coo

We can define a projecting decomposition by:

πa = b πb = b πc = c

So this would be a cofibration. Again, we can contract this edge to
obtain the commuting triangle, obtaining a contradiction to left
properness.

22 / 36



Why do we need both conditions?
Suppose we instead define cofibrations to be induced subgraph
inclusions admitting a projecting decomposition. With the same
graph X as previously, consider the inclusion of edge b → c .

a //

��

b

��
d coo

We can define a projecting decomposition by:

πa = b πb = b πc = c

So this would be a cofibration. Again, we can contract this edge to
obtain the commuting triangle, obtaining a contradiction to left
properness.

22 / 36



Box products of cofibrations

Theorem
A box product of cofibrations is a cofibration.

Proof.
Given cofibrations A� X ,B � Y , consider the inclusion
A� B � X � Y . The no-edges-out property is immediate.
Given (x , y) ∈ (X � Y )V admitting a path to (a, b) ∈ (A� B)V ,
we have paths from x to a in X and from b to y in Y . So let
π(x , y) = (πx , πy).
We have minimal-length paths from x to a through πx and from y
to b through πy ; these can be assembled into a minimal-length
path from (x , y) to (a, b) through (πx , πy).
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Theorem (Carranza-D.-Kapulkin-Opie-Sarazola-Wong)

The category DiGraph admits the structure of a cofibration
category, with cofibrations as previously defined and path
homology isomorphisms as weak equivalences.

Most of the cofibration category axioms can be proven immediately.

Stability of acyclic cofibrations under pushout is more involved –
requires development of excision.
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Simple cofibration category axioms

For any digraph X , the maps idX and ∅� X are cofibrations –
both conditions are trivial.

The 2-out-of-6 property for homology isomorphisms is immediate
from 2-out-of-6 for isomorphisms.

Existence of pushouts along cofibrations and small coproducts are
immediate from cocompleteness of DiGraph.
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Closure under composition

Proposition

The class of cofibrations in DiGraph is closed under composition.

Proof.
Given cofibrations A� X and X � Y , consider A� Y . The
no-edges-out property follows easily from those of A� X and
X � Y .
Let πA, πX denote projecting decompositions of A� X and
X � Y . Given y ∈ YV admitting a path to a ∈ AV , we set
πy = πAπX y . This defines a projecting decomposition of
A� Y .

A similar proof shows cofibrations are closed under transfinite
composition.
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A� Y .

A similar proof shows cofibrations are closed under transfinite
composition.
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Factorization of codiagonals
Let J denote the following directed graph:

−2 −1oo // 0 1oo // 2

Lemma
The inclusion of endpoints {−2, 2}� J is a cofibration, and
J → • is a path homology isomorphism.

Proof.
No-edges-out is immediate. A projecting decomposition is defined
by

π(−2) = −2 π(−1) = −2

π(1) = 2 π(2) = 2

Moreover, J → • is a path homology isomorphism as J is a
tree.
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Factorization of codiagonals

This gives a factorization of the codiagonal of the terminal
diagraph •.

For an arbitrary digraph X , note that X t X → X is is isomorphic
to X � {−2, 2} → X � •.

We can factor this as X � {−2, 2}� X � J
∼−→ X � •. This is the

necessary factorization since the box product preserves cofibrations
and homology isomorphisms.
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Stability of cofibrations under pushout

Consider a pushout diagram, with A� X a cofibration with
projecting decomposition π:

A
f |A //

��

A′

��
X

f // X ′

No-edges-out for A′� X ′ follows from no-edges-out for A� X .

X ′ − A′ is isomorphic to X − A. So we can define a projecting
decomposition π′ of A′� X ′ by setting π′x = f πx .
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Relative path homology

Proving stability of acyclic cofibrations requires some study of
relative path homology.

Given a digraph inclusion A ↪→ X , the relative path homology
groups Hn(X ,A) are the homology groups of the factor complex
Ω(X )/Ω(A).

Theorem (Grigor’yan-Jimenez-Muranov-Yau)

For any digraph inclusion A ↪→ X, there is a relative homology
long exact sequence:

· · · → Hn(X )→ Hn(X ,A)→ Hn−1(A)→ · · ·
→ H0(A)→ H0(X )→ H0(X ,A)→ 0
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Excision

It follows that a digraph inclusion A ↪→ X is a homology
isomorphism if and only if Hn(X ,A) = 0 for all n.

So to show that trivial cofibrations are stable under pushout, it
suffices to show the following excision theorem: given a pushout
diagram

A
f |A //

��

A′

��
X

f // X ′

with A� X and A′� X ′ cofibrations, the induced maps
Hn(X ,A)→ Hn(X ′,A′) are isomorphisms.

(In fact, we show that Ω(X )/Ω(A)→ Ω(X ′)/Ω(A′) is an
isomorphism of chain complexes.)
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Characterizing the factor complex

Given a digraph inclusion A ↪→ X , we let Ω̂n(X ,A) denote the
subgroup of Ωn(X ) consisting of linear combinations of paths
intersecting X − A.

Theorem (Grigor’yan-Jimenez-Muranov-Yau)

If there are no edges out of A in X , then Ωn(X )/Ωn(A) is
isomorphic to Ω̂n(X ,A).
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Excision: proof sketch

If A� X is a cofibration, we can further characterize Ω̂n(X ,A).

Given a path x1 · · · xn in X − A, with all xi admitting edges to A,
we can construct a “grid”:

x1

��

// x2 //

��

x3

��
a1 // a2 // a3

(Here n = 3, ai = πxi .)

The alternating sum of paths along the grid from x1 to a3 gives an
element of Ω̂n(X ,A):

x1x2x3a3 − x1x2a2a3 + x1a1a2a3
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Excision: proof sketch

We can show that any element of Ω̂n(X ,A) is a sum of:

I paths contained entirely in X − A; and

I terms arising from a “grid construction” similar to the above.

It follows that Ω̂n(X ,A) is determined entirely by the complement
X − A, which is unchanged by pushout.
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Exactness of Ω

The construction of the chain complex Ω(X ) defines a functor
Ω: DiGraph→ Ch.

Theorem (Carranza-D.-Kapulkin-Opie-Sarazola-Wong)

Ω is exact with respect to the cofibration category structure on
DiGraph and the projective cofibration category structure on Chproj.

(It follows that Ω is also exact with respect to Chinj as
Chproj ↪→ Chinj is exact.)
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Open questions

Can these cofibrations provide insight regarding Eilenberg-Steenrod
axioms for path homology?

What other kinds of weak equivalences are compatible with these
cofibrations?

Does this cofibration category arise from a model structure on
DiGraph?

(If so, then it’s not cofibrantly generated, i.e., no set of
cofibrations generates the entire class under pushout, transfinite
composition and retracts.)
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