Necklaces and cubical categories

Brandon Doherty

University of Western Ontario

May 20, 2020

Overview

Our goal: a characterization of the functor $\mathfrak{C}\colon \mathsf{sSet}\to\mathsf{cCat}$ (left adjoint of the homotopy coherent nerve) in terms of necklaces in simplicial sets, simplifying the analogous description of $\mathfrak{C}_\Delta\colon\mathsf{sSet}\to\mathsf{sCat}.$

category \setminus theory	Homotopy coherent nerve	$\mathfrak C$ in terms of necklaces
sCat	(Cordier, 1982)	(Dugger-Spivak, 2011)
cCat	(Kapulkin-Voevodsky, 2018)	present work

$\mathfrak{C} \dashv N_{\Box}$

We have a commuting triangle of adjunctions (cf. (Kapulkin-Voevodsky, 2018)):

A concrete description of \mathfrak{C} could simplify the proof that $\mathfrak{C}_{\Delta} \dashv N_{\Delta}$ is a Quillen equivalence.

Throughout this talk, we work with cubical sets having only:

• faces
$$\partial_{i,\varepsilon} \colon [1]^n \to [1]^{n+1};$$

- degeneracies $\sigma_i \colon [1]^n \to [1]^{n-1}$;
- max-connections $\gamma_i \colon [1]^n \to [1]^{n-1}$.

We write cubical structure maps on the right, e.g. $x\partial_{i,\epsilon}$.

Cubical categories

 $cCat := category of categories enriched over (cSet, <math>\otimes$).

For $C \in cCat$, $x, y, z \in C$, composition in C is a map $C(y, z) \otimes C(x, y) \rightarrow C(x, z)$.

Composition adds dimensions: given $f: \Box^m \to C(x, y), g: \Box^n \to C(y, z)$ we have $gf: \Box^n \otimes \Box^m = \Box^{n+m} \to C(x, z).$

Identities are 0-cubes $id_x : \Box^0 \to C(x, x)$.

Composition in a cubical category

Composition satisfies the following identities:

$$\blacktriangleright (f\partial_{i,\varepsilon}) \circ g = (f \circ g)\partial_{i,\varepsilon};$$

•
$$f \circ (g\partial_{i,\varepsilon}) = (f \circ g)\partial_{i+n,\varepsilon};$$

Similar identities for degeneracies and connections.

Examples of cubical categories

Examples:

- For X ∈ cSet we have UX ∈ cCat with objects {x, y}, UX(x, y) = X, other hom-spaces empty or trivial;
- ► cSet with hom-spaces $\underline{hom}_L(X, Y)$ $(\underline{hom}_L(X, Y)_n = cSet(\Box^n \otimes X, Y));$
- $\mathfrak{C}X$ for $X \in \mathsf{sSet}$ the focus of this talk.

Model structure on cCat

Theorem (cf. HTT, Prop. A.3.2.4)

cCat carries a model structure in which:

- Generating cofibrations are $\varnothing \to *$ and $U \partial \Box^n \to U \Box^n$;
- ► $F: C \to D$ is a weak equivalence if $\pi_0 C \to \pi_0 D$ is essentially surjective and each $C(x, y) \to D(Fx, Fy)$ is a Grothendieck weak equivalence.

We'd like to show that \mathfrak{C} : sSet \rightleftharpoons cCat : N_{\Box} is a Quillen equivalence between the Joyal model structure and this one.

Necklaces: formal definition

To show \mathfrak{C} is a left Quillen functor, we'd like a more explicit description of it. Our description will involve **necklaces**.

A **necklace** is a simplicial set $T = \alpha : \Delta^{n_1} \vee \Delta^{n_2} \vee ... \vee \Delta^{n_k}$, for some choice of k, n_i . (Terminal vertex of each Δ^{n_i} is identified with initial vertex of $\Delta^{n_{i+1}}$.)

The **beads** of T are the Δ^{n_i} ; the **joins** are the endpoints of the beads.

For $X \in sSet$, a **necklace in** X is a map $T \to X$ for some such T.

Example: $\Delta^2 \lor \Delta^2 \lor \Delta^2 \to X$

A concrete description of \mathfrak{C}_{Δ} in terms of necklaces is given in (Dugger-Spivak, 2011) and (Riehl, 2011).

For $X \in$ sSet, objects of $\mathfrak{C}_{\Delta}X$ are vertices of X. An *m*-simplex of $\mathfrak{C}_{\Delta}X(x, y)$ consists of a necklace $T = \Delta^{n_1} \vee ... \vee \Delta^{n_k}$; a map $T \to X$ with initial vertex x, terminal vertex y, and all beads non-degenerate; and an ascending chain $J_T = T^0 \subseteq T^1 \subseteq ... \subseteq T^m = V_T$, where J_T is the set of joins of T and V_T is the set of vertices of T.

Recall the definition of $\mathfrak{C}\Delta^n$ (Kapulkin-Voevodsky, 2018):

$$\blacktriangleright \text{ Ob} \mathfrak{C} \Delta^n = \{0, ..., n\};$$

- C∆ⁿ(i,j) = □^{j-i-1}; view 0-cubes as paths in [n] from i to j and higher cubes as refinements;
- Composition: concatenation of paths.

Example: $\mathfrak{C}\Delta^2$:

More examples $\mathfrak{C}\Delta^3(0,3)$:

 $\mathfrak{C}\Delta^4(0,4)$:

Necklaces in Δ^n

We can view paths from *i* to *j* in [*n*] as chains of 1-simplices in Δ^n .

$$0 \longrightarrow 1 \longrightarrow 3$$

Refinements of paths correspond to **necklaces** of simplices in Δ^n .

Composition in $\mathfrak{C}\Delta^n$

Composition corresponds to **concatenation** of necklaces.

Composition in $\mathfrak{C}\Delta^n$

Composition corresponds to **concatenation** of necklaces.

Example:

Composition in $\mathfrak{C}\Delta^n$

Composition corresponds to **concatenation** of necklaces.

Example:

Using the fact that \mathfrak{C} preserves colimits, we extend this description to $\mathfrak{C}X$ for $X \in sSet$.

- Objects are 0-cubes of X;
- n-cubes of CX(x, y) are necklaces α in X with initial vertex x and terminal vertex y, with all beads α_i of dimension at least 1, and:

$$\sum_{i=1}^k (n_k - 1) = n$$

Examples

0-cubes of $\mathfrak{C}X(x,y)$ are paths $x \to y$ in X. X $\mathfrak{C}X(x,y)$

Examples

1-cubes of $\mathfrak{C}X(x, y)$ are "factorizations" coming from 2-simplices. X $\mathfrak{C}X(x, y)$

Examples

2-cubes of $\mathfrak{C}X(x, y)$ can come from 3-simplices, or pairs of 2-simplices.

$$X$$
 $\mathfrak{C}X(x,y)$

Faces

Faces (of cubes coming from simplices) are computed by taking particular sub-necklaces.

Faces of cubes coming from proper necklaces are computed using the identities for faces of composites.

Faces

Faces (of cubes coming from simplices) are computed by taking particular sub-necklaces.

Connections and degeneracies

Connections and "outer" degeneracies (σ_1, σ_n) are computed by taking certain degeneracies of simplices. (These are precisely the degeneracies which induce maps on the quotients Q^n .)

"Inner" degeneracies σ_i for 1 < i < n do not correspond to necklaces – they are added formally.

Identifications

Necklace representations of cubes are not unique – they are subject to some identifications.

Degenerate edges can be omitted, thus they are identities.

$$x \longrightarrow y = y = x \longrightarrow y$$

Further identifications occur between necklaces with degenerate beads.

Every non-identity, non-degenerate cube of $\mathfrak{C}X$ is represented by a unique **totally non-degenerate** necklace (all beads non-degenerate).

The characterization of \mathfrak{C}_{Δ} in terms of necklaces can be seen as a consequence of our characterization of \mathfrak{C} , together with the following characterization of triangulation:

For $X \in cSet$, an *m*-simplex of *TX* consists of a non-degenerate cube $x \colon \Box^n \to X$ together with a map $\Delta^m \to (\Delta^1)^n$.

${\mathfrak C}$ as a left Quillen functor

This description of $\mathfrak C$ makes it easy to show that $\mathfrak C$ is a left Quillen functor.

Proposition

 $\mathfrak C$ preserves cofibrations.

Proof. $\mathfrak{C}\partial\Delta^n(0,n) = \partial\Box^{n-1}$, and all other mapping spaces are the same as those of $\mathfrak{C}\Delta^n$. Thus $\mathfrak{C}\partial\Delta^n \to \mathfrak{C}\Delta^n$ is a pushout of $U\partial\Box^{n-1} \to U\Box^{n-1}$.

A similar proof shows:

Proposition

 $\mathfrak C$ sends inner horn inclusions to trivial cofibrations.

Let $E^1 = N(0 \cong 1)$. To complete the proof that \mathfrak{C} is a left Quillen functor it suffices to show:

 $\begin{array}{l} \mbox{Proposition} \\ \mathfrak{C} E^1 \mbox{ is contractible.} \end{array}$

This can be done by a detailed analysis of necklaces in E^1 .