
∞-COSMOI

BRANDON DOHERTY

The concept of an ∞-cosmos, due to Riehl and Verity, is meant to provide a unifying framework
for the theory of higher categories, generalizing various common models such as quasi-categories
and complete Segal spaces. Essentially, an ∞-cosmos is a kind of simplicially enriched fibration
category, whose objects are thought of as ∞-categories, and in which one can define analogues of
many concepts from ordinary category theory, such as adjunctions and comma categories. A key
property of the theory of ∞-cosmoi is model-independence, the idea that categorical constructions
and properties can be transfered from one∞-cosmos to another along suitably-defined equivalences
of ∞-cosmoi. In these expository notes we will introduce ∞-cosmoi, describe various categorical
constructions in this framework, and give proofs of some basic model-independence results.

1. Definitions of an ∞-cosmos

We begin by defining the basic objects of study.

Definition 1.1. Let C be a simplicial category, equipped with specified wide subcategories F and
W of C0, referred to as the classes of isofibrations and weak equivalences, respectively. As usual, we
refer to W ∩ F as the class of trivial fibrations. Then C is an ∞-cosmos if the following properties
hold:

(1) W satisfies the 2-out-of-6 property;
(2) C has a terminal object ∗, all pullbacks along isofibrations, and a cotensor AK for every

A ∈ C and every finite simplicial set K;
(3) For every object A ∈ C, the unique map A→ ∗ is an isofibration;
(4) The classes of isofibrations and trivial fibrations are stable under pullback;
(5) Given an isofibration p : A → B in C and a monomorphism i : K ↪→ L between finite

simplicial sets, the pullback cotensor AL : i . p : AK ×BK BL is an isofibration, and it is
trivial if either p is a trivial fibration or i is a trivial cofibration in the Joyal model structure;

(6) Every object A ∈ C admits a cofibrant replacement, i.e. a trivial fibration A′ → A where
A′ has the left lifting property with respect to all trivial fibrations.

Remark 1.2. The limits mentioned in this definition are simplicial limits – their universal proper-
ties are described in terms of the mapping simplicial sets of C. Specifically, for an ordinary category
J and a functor F : J → C (where J is viewed as a simplicial category with discrete mapping spaces),

the object limF is defined by the isomorphism C(X, limF )
∼=−→ limj∈j C(X,Fj). For more on this,

see [4, Digression 1.2.5 and Appendix A5].

Remark 1.3. The existence of the pullback cotensors mentioned in (5) above can be proven from
the axioms. For any inclusion of finite simplicial sets K ↪→ L and any B ∈ C, the map BL → BK

is the pullback cotensor of K ↪→ L with the isofibration B → ∗. The necessary pullback square
to define this map exists since ∗L → ∗K is just the identity map id∗, and then BL → BK is an
isofibration by axiom (5).

In many cases, we are able to work with a simpler axiomatization:
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Definition 1.4. Let C be a simplicial category equipped a wide subcategory F ⊆ C0 as above.
Then C is an ∞-cosmos with all objects cofibrant if the following properties hold:

(1) For any objects A,B ∈ C, the mapping simplicial set C(A,B) is a quasi-category;
(2) C has a terminal object ∗, all pullbacks along isofibrations, and a cotensor AK for every

A ∈ C and every finite simplicial set K;
(3) For every object A ∈ C, the unique map A→ ∗ is an isofibration;
(4) Isofibrations are stable under pullback and under pullback cotensors with inclusions of finite

simplicial sets, as in Definition 1.1;
(5) If p : A→ B is an isofibration, then for anyX ∈ C, the post-composition map C(X, p) : C(X,A)→
C(X,B) is a Joyal fibration.

Definition 1.5. Let C be an ∞-cosmos with all objects cofibrant; then a map f : A → B in C0 is
an equivalence if the induced map C(X, f) : C(X,A)→ C(X,B) is a weak equivalence in the Joyal
model structure for all X ∈ C.

Our first goal will be to show that these definitions are consistent, i.e. that an ∞-cosmos with all
objects cofibrant, in the sense of Definition 1.4, is precisely an ∞-cosmos in the sense of Defini-
tion 1.1 whose objects are all cofibrant. For concreteness, we define exactly what we mean by a
cofibrant object:

Definition 1.6. An object A in an ∞-cosmos C is cofibrant if it has the left lifting property with
respect to all trivial fibrations: that is, given any trivial fibration p : C → B and a map f : A→ B
there exists a map g : A→ C with pg = f .

C

p∼
����

A
f //

∃g
??

B

Note that this definition is phrased entirely in terms of isofibrations and weak equivalences; in
particular, we do not assume that an ∞-cosmos has an initial object, and we do not define a
concept of cofibration in an ∞-cosmos.

We begin by showing one implication : that any∞-cosmos with all objects cofibrant is an∞-cosmos
in which all objects are cofibrant.

Lemma 1.7. Let C be an ∞-cosmos with all objects cofibrant; then all objects of C are cofibrant.

Proof. Let A ∈ C, and let p : B → C be a trivial fibration in C. The induced map C(A,B)→ C(A,C)
is a Joyal fibration by axiom (5), and a Joyal weak equivalence by assumption. Thus it is a trivial
fibration, meaning in particular that it is surjective on vertices. Therefore, any map A→ C factors
through p. �

Proposition 1.8. Let C be an ∞-cosmos with all objects cofibrant; then C is an ∞-cosmos, with
the weak equivalences being the equivalences of Definition 1.5.

Proof. Axioms (2), (3), and (5) of Definition 1.1 are immediate from the corresponding axioms of
Definition 1.4, as is the first part of axiom (4), that isofibrations are stable under pullback. Axiom
(1) follows from the 2-out-of-6 property in sSetJoyal. Axiom (6) follows trivially from Lemma 1.7.

All that remains to be shown is that trivial fibrations in C are stable under pullback. For this, note
that for any X ∈ C, the functor C(X,−) preserves all simplicial limits. So for f : A→ C, p : B → C,
if p∗ : A ×C B → A denotes the pullback of p along f , then the pullback of C(X, p) along C(X, f)
is C(X, p∗). Now, if p is a trivial fibration in C, then C(X, p) is a trivial fibration in sSetJoyal, hence
so is C(X, p∗). In particular, this means that p∗ is an equivalence since it induces an equivalence
on mapping spaces, and it is also an isofibration since isofibrations are assumed to be stable under
pullback. �
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Our next goal will be to prove the converse implication: that an ∞-cosmos in which all objects are
cofibrant is an ∞-cosmos with all objects cofibrant. This will require several lemmas. In all of the
following lemmas, let C be an ∞-cosmos whose objects are all cofibrant, and let A,B,C,X denote
objects of C.

Lemma 1.9. Let i : U ↪→ V be an inclusion of finite simplicial sets, and p : A → B a morphism
in C. Then C(X, f) : C(X,A) → C(X,B) has the right lifting property with respect to the pullback
cotensor i . p.

Proof. This is a routine exercise in duality, analogous to the corresponding result for pushout
products and pullback exponentials in a category with all limits and colimits. �

Lemma 1.10. Let i : U ↪→ V be an inclusion of finite simplicial sets. Then Ai : AV → AU is an
isofibration, which is trivial if i is a Joyal trivial cofibration.

Proof. A simple computation shows that Ai is the pullback cotensor of i with the isofibration
A→ ∗, so this follows from Definition 1.1, axiom (5). �

Lemma 1.11 ([7, Lemma 2.1.6]). The underlying category of C, together with the classes of isofi-
brations and weak equivalences, forms a fibration category.

Proof. The only one of the fibration category axioms which is not explicitly part of Definition 1.1 is
the existence of a path object for every object of C. For this, the cotensoring gives us the following
factorization of the diagonal map of A:

AJ

����

A = A∆0

∼
77

// A∂∆1
= A×A

The map AJ → A × A, induced by the cofibration ∂∆1 ↪→ J , is an isofibration by Lemma 1.10,
while A → AJ is a weak equivalence since it is a section of the trivial fibration AJ → A induced
by the trivial cofibration {0} ↪→ J . �

For later use, we introduce notation for certain maps from the path object defined above. Let p0, p1

denote the maps AJ → A induced by {0} → J, {1} → J , respectively.

Lemma 1.12. All mapping spaces in C are quasi-categories.

Proof. Trivially, the map C(X,A) → ∆0 = C(X, ∗) is induced by the isofibration A → ∗. By
Lemma 1.9, this map has the right lifting property with respect to an inner horn inclusion Λnk ↪→ ∆n

if and only if X has the right lifting property with respect to the pullback cotensor of Λnk ↪→ ∆n

with A→ ∗ (which is in fact just the map A∆n → AΛn
k ). By Definition 1.1, axiom (5), this map is

a trivial fibration, so a lift does exist since X is cofibrant. �

Lemma 1.13 ([7, Lemma 2.1.8]). Let p : A → B be an isofibration; then C(X, f) : C(X,A) →
C(X,B) is a Joyal fibration, which is trivial if p is.

Proof. By Lemma 1.12, to check that C(X, f) is a Joyal fibration, it suffices to verify that it has
the right lifting property with respect to any map i which is either an inner horn inclusion or the
inclusion {0} → J . By Lemma 1.9, this holds if and only if X has the right lifting property with
respect to i . p. But since i is a trivial Joyal cofibration, i . p is a trivial fibration, so the statement
holds.

If p is a trivial fibration, we can apply the same argument to the boundary inclusions ∂∆n ↪→ ∆n,
now using the fact that p is a trivial fibration to show that the pullback cotensor is a trivial
fibration. �
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Lemma 1.14 ([7, Lemma 3.1.7]). Let f, g : A → B, and let α : f → g be an invertible edge in
C(A,B). Then f is a weak equivalence if and only if g is.

Proof. Without loss of generality, we’ll asumme f is a weak equivalence and show that g is one as
well. By definition, there is a map J → C(A,B) sending the edge 0 → 1 to α; this corresponds to
a map ᾱ : A→ BJ with p0ᾱ = f, p1ᾱ = g.

Observe that p0 and p1 are trivial fibrations by Lemma 1.10 as they are induced by trivial cofibra-
tions ∆0 → J . Thus, if f is a weak equivalence, then ᾱ is a weak equivalence by 2-out-of-3, since
p0ᾱ = f . This then implies that g is a weak equivalence, since p1ᾱ = g. �

We are now ready to show that, in an ∞-cosmos whose objects are all cofibrant, the weak equiva-
lences are precisely those specified by Definition 1.5.

Proposition 1.15 ([7, Proposition 3.1.8]). A map f : A → B is a weak equivalence if and only if
C(X, f) is a weak equivalence for all X ∈ C.

Proof. First, suppose that f is a weak equivalence. By Lemma 1.11, we can factor f as pi, where
p is a trivial fibration and i is a section of some trivial fibration q. Then for any X, C(X, p) is a
weak equivalence by Lemma 1.13, while C(X, i) is a weak equivalence as it is a section of the trivial
fibration C(X, q). Composing these, we see that C(X, f) is a weak equivalence as well.

Next suppose that every map C(X, f) is a weak equivalence, and therefore a categorical ho-
motopy equivalence by Lemma 1.12, having a homotopy inverse kX : C(X,B) → C(X,A). Let
g = kB(idB) : B → A; then there is an invertible edge fg ' idB in C(B,B). Using the defining
property of the cotensor, this corresponds to a map H : B → BJ with p0H = fg, p1H = idB. Then
for any X, since C(X,BJ) ∼= C(X,B)J , the map C(X,H) defines a homotopy from C(X, fg) to
idC(X,B) in sSet. Thus we have a composite homotopy:

kX ∼ kX ◦ C(X, f) ◦ C(X, g) ∼ C(X, g)

Thus C(X, g) is a homotopy inverse of C(B, f). In particular, C(A, g) is a homotopy inverse of
C(A, f). So in addition to the invertible edge fg ' idB already mentioned, we have an invertible
edge gf ' idA in C(A,A). Therefore, by Lemma 1.14, both gf and fg are weak equivalences; thus
f and g are weak equivalences by 2-out-of-6. �

Theorem 1.16. An ∞-cosmos in which all objects are cofibrant is an ∞-cosmos with all objects
cofibrant, in the sense of Definition 1.4.

Proof. Axioms (2), (3), and (4) of Definition 1.4 follow immediately from the corresponding axioms
of Definition 1.1. Axiom (1) is Lemma 1.12, and axiom (5) is part of Lemma 1.13. Finally,
Proposition 1.15 shows that the weak equivalences in an ∞-cosmos whose objects are all cofibrant
correspond with those of Definition 1.5. �

For later use, we record the following result which was shown as part of the proof of Proposition 1.15:

Corollary 1.17. A map w : A→ B in an ∞-cosmos C with all objects cofibrant is an equivalence
if and only if it is an equivalence in HoC, i.e. if and only if there is a map w′ : A→ B and a pair
of invertible 2-cells ww′ ∼= idB, w

′w ∼= idA. �

2. Examples of ∞-cosmoi

Now we will construct some examples of∞-cosmoi. The primary source of examples is the following:
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Proposition 2.1 ([7, Lemma 2.2.1]). Let C be a model category, enriched over the Joyal model
structure on sSet. Then the full simplicial subcategory of fibrant objects of C, together with its
classes of weak equivalences and fibrations, forms an ∞-cosmos.

Proof. Axioms (1), (4) and (6) of Definition 1.1 are true in any model category. For (2), the
cotensoring is part of the definition of an enriched model category, while the other limits exist
because the terminal object in any model category is fibrant, as is any pullback object for which one
of the two maps being pulled back is a fibration between fibrant objects. Axiom (3) is guaranteed
by the fact that we have restricted our attention to fibrant objects, while (5) is again part of the
definition of an enriched model category. �

In particular, this gives us our primary example of an ∞-cosmos, which the definition is meant to
generalize:

Example 2.2. The category of quasi-categories, with Joyal fibrations and categorical equivalences,
forms an ∞-cosmos.

Proof. It is well-known that sSetJoyal is enriched over itself, with the simplicial structure and coten-
soring given by the standard simplicial enrichment and cartesian closure of sSet. �

Thus we see that an ∞-cosmos can model the homotopy theory of (∞, 1)-categories. Furthermore,
the concept is broad enough to include models for the homotopy theories of many other kinds of
higher categories, including ∞-groupoids and 1-categories.

Proposition 2.3 ([7, Proposition 2.2.3]). Let C be a cartesian closed model category, enriched over
its own model structure, equipped with a Quillen adjunction L : sSetJoyal 
 C : R such that the left
adjoint L preserves binary products. Then C admits the structure of a simplicial category with a
model structure enriched over sSetJoyal.

Proof. For A,B ∈ C, define the simplicial set C(A,B) to be RBA; the composition map is then
naturally induced by that of C using the fact that R preserves products. For K ∈ sSet, A ∈ C,
define the tensoring and cotensoring by A⊗K = A× LK, AK = ALK .

To see that this defines a valid cotensoring, a routine computation shows that C(A,BLK)n ∼=
C(A × LK × L∆n, B), which is naturally isomorphic to C(A × L(K × ∆n), B) by assumption. A
further computation shows that this is naturally isomorphic to sSet(K ×∆n, RBA) = ((RBA)K)n.
A similar proof holds for the tensoring.

Now we must show that this enrichment over sSet defines an enrichment of the model category C
over sSetJoyal. To see this, consider a cofibration i : U ↪→ V in sSet and an isofibration p : A → B
in C. The pullback cotensor i . p is simply the pullback exponential Li . p in C. Since L preserves
cofibrations, Li is a cofibration; therefore, the pullback cotensor is a fibration, which is trivial if p
is. If i is a trivial cofibration in the Joyal model structure, then Li is a trivial cofibration in C, so
again the fibration Li . p is trivial. �

Corollary 2.4. Let C be a cartesian closed model category, enriched over its own model structure,
with a Quillen adjunction L : sSetJoyal 
 C : R such that the left adjoint L preserves binary
products. Then the category of fibrant objects of C, with its fibrations and weak equivalences, forms
an ∞-cosmos. �

Example 2.5. The category of Kan complexes, with Kan fibrations and weak equivalences, forms
an ∞-cosmos.

Proof. It is well-known that sSetQuillen is enriched over itself, and we have a Quillen adjunction
sSetJoyal : idsSet 
 sSetQuillen : idsSet, whose left adjoint preserves all products. �
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Example 2.6 ([7, Example 2.2.4]). The category Cat, with equivalences of categories and isofibra-
tions, forms an ∞-cosmos.

Proof. We have the Quillen adjunction τ : sSetJoyal 
 Cat : N , where Cat has its standard model
structure, and τ preserves binary products. Cat is cartesian closed via the standard functor category
construction, so to apply Corollary 2.4 we simply need to show that Cat is enriched over its own
model structure. The stated result will then follow since all categories are fibrant.

To that end, recall that the cofibrations of Cat are precisely those functors which are injective on
objects, and consider the pushout product F ×̂G of a pair of cofibrations F : A → B, G : C → D.

The map on objects of F ×̂G is the pushout product of those of F andG; hence it is a monomorphism
as a pushout product of monomorphisms in Set. Thus F ×̂G is a cofibration.

Now suppose that G is a trivial cofibration. Since a product of equivalences of categories is an
equivalence of categories, idA ×G is a trivial cofibration. Thus its pushout along F × idC is also a
trivial cofibration, as is idB × G. Therefore, F ×̂G is a weak equivalence by 2-out-of-3, and hence
a trivial cofibration. �

Example 2.7 ([7, Example 2.2.5]). The category of complete Segal spaces has the structure of an
∞-cosmos, with the equivalences and isofibrations being the weak equivalences and fibrations of
Rezk’s model structure for complete Segal spaces on ssSet.

Proof. The category ssSet is cartesian closed and enriched over itself with Rezk’s model structure;
see [3]. So we will once again apply Corollary 2.4.

We have an adjunction C : sSet 
 ssSet : U , where C sends a simplicial set X to the constant
bisimplicial set at X, and U sends a bisimplicial set Y to the simplicial set Y0. By [1, Theorem
4.11], this is a Quillen equivalence, and it is clear that C preserves products. �

Remark 2.8. We have seen from the examples above that an ∞-cosmos can model the homotopy
theory of many different kinds of higher categories, including (∞, 1)-categories, ∞-groupoids, and
1-categories. Unfortunately, not all models for the homotopy theories of such higher categories
form ∞-cosmoi, at least not in such natural ways as we saw above. For instance, consider the
Grothendieck model structure on the category cSet of cubical sets with connections. In [2], Ka-
pulkin, Lindsey and Wong exhibit an adjunction Q : sSet 
 cSet :

∫
Q which is a Quillen adjunction

if sSet is given the Joyal model structure, and a Quillen equivalence if it is given the Quillen model
structure. The category cSet is indeed cartesian closed and enriched over its own model structure,
but we cannot apply Corollary 2.4 as the left adjoint Q does not preserve products. Similar is-
sues would occur if we tried to induce an ∞-cosmos structure on sCat via the Quillen equivalence
C : sSetJoyal 
 sCat : N∆.

In [7], Riehl and Verity construct many more examples of ∞-cosmoi, including Segal categories,
naturally marked quasi-categories, θn-spaces, and Rezk objects (simplicial objects in an arbitrary
left proper combinatorial model category C which are fibrant in the Reedy model structure on C∆op

and satisfy Segal and completeness conditions).

3. Category theory in an ∞-cosmos

The focus of this section will be on generalizing category-theoretic concepts to an arbitrary ∞-
cosmos with all objects cofibrant, using the homotopy 2-category construction.

Definition 3.1. Given an ∞-cosmos C, the homotopy 2-category of C, denoted HoC, is the 2-
category whose objects are the cofibrant objects of C, and whose hom-categories are given by
HoC(A,B) = Ho(C(A,B)), with horizontal composition induced in the natural way by the compo-
sition in C.
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One might note that in all of the examples explicitly constructed above, all objects in the∞-cosmos
of interest are cofibrant; indeed, this is also true of all the examples constructed in [7], with the
exception of Rezk objects. From here on, we will assume that all ∞-cosmoi under discussion have
all objects cofibrant, as this is the setting in which most of the theory has been developed; in
particular, the foundational text [4] uses Definition 1.4, rather than Definition 1.1, as its definition
of an ∞-cosmos.

Throughout the remainder of the paper, let C denote an ∞-cosmos with all objects cofibrant. Any
mention of 2-cells refers to 2-cells in HoC, i.e. morphisms in some mapping category HoC(A,B).

3.1. Adjunctions.

Definition 3.2. An adjunction in an∞-cosmos C is an adjunction in HoC. Explicitly, this consists
of two objects X,Y ∈ C and a pair of morphisms f : X → Y, g : Y → X, together with maps
idX → gf in HoC(X,Y ) and fg → idY satisfying the usual triangle identities.

Remark 3.3. In the case of the ∞-cosmos of quasi-categories this coincides with the familiar
definition of an adjunction in a quasi-category.

The 2-categorical notion of adjunction can also be described using the concept of absolute right
lifting.

Definition 3.4. Let f : A → B, g : C → B be 1-cells in a 2-category C. An absolute right lifting
of g through f is a map l : C → A, together with a 2-cell λ : fl =⇒ g, such that given any 2-cell
α : fh→ gj, there exists a unique 2-cell η : h→ lj such that λj ◦ fη = α.

Proposition 3.5 ([5, Exercise 2.2.7]). In a 2-category C, let f : A→ B, u : B → A be 1-cells, and
let ε : fu =⇒ idA be a 1-cell.Then ε is the counit of an adjunction if and only if ε witnesses u as
an absolute right lifting of idA through f .

Proof. First, suppose that ε witnesses u as an absolute right lifting of idA through f . Then there
exists a unique 2-cell η : idA → uf such that idf factors as εf ◦ fη.

This gives us one of the two triangle identities. For the other, consider the following pasting
diagram:

A
f

��
ε

��

η

��

A

ε

��

f

��
B

u
??

B

u
??

B

The identity which has already been established shows that the composite of the middle and right
triangles is idf , so the whole diagram composes to ε. The uniqueness condition of Definition 3.4
thus implies that the composite of the middle and left triangles is idu, proving the other triangle
identity.

On the other hand, suppose that ε is the counit of an adjunction with unit η, and consider a pair
of maps g : C → A, h : C → B, and a 2-cell α : fg =⇒ h:

Let β denote the composite 2-cell uα ◦ ηg : g =⇒ uh. Then by definition, εh ◦ fβ is the composite
of the following pasting diagram:

C
g //

h
22

A

α

��

f

��
η

��

A

ε

��

f

��
B

u
??

B

This is α, since the middle and right triangles compose to idf .
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Now suppose we have some other 2-cell β′ : g =⇒ uh satisfying εh ◦ fβ′ = α. Consider the
following pasting diagram:

C
h

  

g //

β′

��

A

ε

��

f

��
η

��

A

B

u
??

B

u
??

The middle and right triangles compose to idu by a triangle identity, so the pasting diagram
composes to β′. On the other hand, the left and middle triangles compose to α by assumption, so
the composite of the diagram is uα◦ηg = β. So β′ = β; thus we see that β is unique, so ε witnesses
u as an absolute right lifting of idA through f . �

3.2. Limits and colimits. We now turn our attention to diagrams in an object of an ∞-cosmos,
and limits of such diagrams.

Definition 3.6. Given an object A in an ∞-cosmos C and a simplicial set K, the diagram object
of shape K in A is the object AK given by the cotensoring in C.

Remark 3.7. If C is cartesian closed, meaning that each functor A×− : C → C has a right adjoint,
then for A,B ∈ C we also have an object AB of diagrams in A of shape B. The theory of limits
and colimits of such diagrams is analogous to the theory of diagrams indexed by simplicial sets.

We think of maps from the terminal object ∗ → AK as diagrams in the ∞-category A indexed by
the simplicial set K. We can define the limit of such a diagram by an appropriate generalization
of the standard 1-categorical universal property of the limit.

Definition 3.8. Let A be an object in an ∞-cosmos C, K a simplicial set, and d : ∗ → AK a
diagram in A of shape K. A limit of d is an absolute right lifting of d through the constant
diagram map ∆: A → AK (defined by the action of the cotensoring functor on the unique map
K → ∆0) in HoC.

Remark 3.9. Thinking of A as an ∞-category, maps ∗ → A as objects, and maps B → A as
“generalized objects” allows us to see how the definition above generalizes the standard universal
property of the limit. The map l : ∗ → A plays the role of the limit object, with λ : ∆a =⇒ d as

its limit cone; given h : D → A, a 2-cell from ∆h to D → ∗ d−→ AK represents a cone over d whose
“vertex” is the generalized object h, which must factor uniquely through λ.

More broadly, we can define a family of diagrams of shape K in A to be a map B → AK for some
object B in C. The above definition can then be generalized:

Definition 3.10. Let C, A,K be as in Definition 3.8, and let F : B → AK be a family of diagrams
in A of shape K. Then a limit of F is an absolute right lifting of F through ∆: A→ AK .

In particular, if the identity map on AK admits an absolute right lifting, then A admits limits of
all diagrams of shape K.

We can show that limits are unique up to homotopy, i.e. up to isomorphism in HoC.

Proposition 3.11. Let l, l′ : ∗ → A be two limits of a diagram d : ∗ → AJ , with absolute right
lifting 2-cells λ : ∆l =⇒ d, λ′ : ∆l′ =⇒ d. Then l ∼= l′ in HoC(∗, A).

Proof. There is a unique 2-cell α : l =⇒ l′ such that λ′ ◦ ∆α = λ, and likewise a unique 2-cell
α′ : l′ =⇒ l such that λ ◦∆α′ = λ′. Then we can compute λ ◦∆α′ ◦∆α = λ′ ◦∆α = λ′; thus, by
uniqueness, α′ ◦α = idl. Similarly, α◦α′ = idl′ . Therefore, l and l′ are isomorphic in HoC(∗, A). �

We have an analogue of the familiar relationship between adjunctions and limits:
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Proposition 3.12. An object A ∈ C admits limits of all diagrams of shape K if and only if the
diagonal map A→ AJ has a right adjoint.

Proof. This is immediate from Definition 3.10 and Proposition 3.5. �

Remark 3.13. There is a dual concept of absolute left lifting, through which we can develop of
theory of colimits in an ∞-cosmos; see [5, Section 2.3].

3.3. Comma objects. We now describe the construction of comma objects in an ∞-cosmos,
analogous to comma categories. Throughout this section, let A,B,C be objects in C, with maps
f : B → A, g : C → A.

We begin with a special case which is used in the general definition:

Definition 3.14. Let A be an object in an ∞-cosmos C. The arrow object of A is the cotensor

A∆1
.

Observe that we have a natural map (p0, p1) : A∆1 → A∂∆1
= A × A induced by the inclusion

∂∆1 ↪→ ∆1; this is an isofibration by axiom (5) of Definition 1.1.

Definition 3.15. The comma object f ↓ g is defined to be the pullback of the cospan B×C (f,g)−−−→
A×A (p0,p1)←−−−− A∆1

.

f ↓ g

(p0,p1)
����

// A∆1

(p0,p1)
����

B × C
(f,g) // A×A

We denote the composites of the pullback map f ↓ g → B×C with the projections to B and C by
p0, p1, respectively.

Definition 3.16. The comma cone of f ↓ g is the canonical 2-cell φ : fp0 =⇒ gp1 in HoC(f ↓ g,A)

represented by the edge of C(f ↓ g,A) corresponding to the pullback map f ↓ g → A∆1
.

Remark 3.17. Observe that, by taking f = g = idA, we can recover the arrow object A∆1
as

the comma object idA ↓ idA. Thus we are not abusing notation in referring to both the maps

A∆1 → A×A and f ↓ g → B × C as (p0, p1).

By the defining property of simplicial limits, we have an isomorphism C(X, f ↓ g) ∼=
C(X, f) ↓ C(X, g), where the latter term denotes the corresponding pullback in sSet. On the level
of homotopy categories, we have a canonical map HoC(X, f ↓ g)→ HoC(X, f) ↓ HoC(X, g), but this
is not an isomorphism. We can, however, describe HoC(X, f ↓ g) via a weak universal property,
which we will now describe.

Definition 3.18. A functor is smothering if it is surjective on objects, full, and conservative.

Proposition 3.19 ([6, Proposition 3.3.18]). Let f : B → A, g : C → A be maps in an ∞-cosmos C.
For any X ∈ C, the canonical map HoC(X, f ↓ g)→ HoC(X, f) ↓ HoC(X, g) is smothering. �

This allows us to prove the weak universal property of comma objects, simply by unwinding the
definition of a smothering functor.

Proposition 3.20 ([5, Observation 3.1.4]). Given f, g as above, we have the following:

(1) Given a pair of maps b : X → B, c : X → C, and a 2-cell α : fb =⇒ gc in HoC(X,A), there
exists a map a : X → f ↓ g such that poa = b, p1a = c, and φa = α.
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(2) Given a pair of maps a, a′ : X → f ↓ g and a pair of 2-cells τ0 : p0a =⇒ p0a
′, τ1 : p1a =⇒

p1a
′ such that gτ1 ◦ φa = φa′ ◦ fτ0 : fp0a =⇒ gp1a

′, there exists a 2-cell τ : a =⇒ a′ in
HoC(X, f ↓ g) such that τ0 = p0τ, τ1 = p1τ .

(3) Given a, a′ : X → f ↓ g and a 2-cell τ : a =⇒ a′ in HoC(X, f ↓ g), if p0τ and p1τ are
isomorphisms, then τ is an isomorphism.

Proof. By analyzing the relevant pullbacks, we can characterize the objects and morphisms of
HoC(X, f ↓ g) and HoC(X, f) ↓ HoC(X, g) and the canonical map between these categories.

An object of HoC(X, f ↓ g) is a map X → f ↓ g, and a morphism between two such objects
is simply a 2-cell between them (there is no need to describe such 2-cells more explicitly for the
purpose of proving this lemma).

An object of HoC(X, f) ↓ HoC(X, g) is a pair of maps b : X → B, c : X → C together with a 2-cell
τ : fb =⇒ gc. A map from (b, c, τ) to (b′, c′, τ ′) is a pair of 2-cells µ0 : b =⇒ b′, µ1 : c =⇒ c′,
such that the following diagram in HoC(X,A) commutes:

fb

τ

��

fµ0 +3 fb′

τ ′

��
gc

gµ1 +3 gc′

The functor HoC(X, f ↓ g) → HoC(X, f) ↓ HoC(X, g) sends a map a : X → f ↓ g to the triple
(p0a, p1a, φa). A 2-cell τ : a =⇒ a′ is sent to the pair (p0τ, p1τ).

With this in mind, the three statements all follow from Proposition 3.19. Condition (1) is sim-
ply a rephrasing of the condition of surjectivity on objects. For condition (2), a and a′ are ob-
jects in HoC(X, f ↓ g), their images in HoC(X, f) ↓ HoC(X, g) are the triples (p0a, p1a, φa) and
(p0a

′, p1a
′, φa′) respectively, and a map between these images is given by (τ0, τ1) such that the

following diagram commutes:

fp0a
fτ0 +3

φa

��

fp0a
′

φa′

��
gp1a gτ1

+3 gp1a
′

So the fullness of HoC(X, f ↓ g) → HoC(X, f) ↓ HoC(X, g) means that any such pair τ0, τ1 has a
pre-image in HoC(X, f ↓ g), i.e. a 2-cell τ : a =⇒ a′ such that p0τ = τ0, p1τ = τ1.

Similarly, (3) is a rephrasing of the conservativity condition: the 2-cell τ in the statement is a
morphism from a to a′ in HoC(X, f ↓ g), its image is (p0τ, p1τ), and this map is an isomorphism if
and only if its two components are isomorphisms. �

We can think of this result as providing us with operations on the 2-cells in HoC.
Definition 3.21. We refer to conditions (1) and (2) of Proposition 3.20 as 1-cell induction and
2-cell induction, respectively.

We may think of the above as a “weak universal property”; for instance, 1-cell induction says that
a pair of maps A→ B and A→ C whose composites are related by a 2-cell can be pulled back to
a map A → f ↓ g in a way which is compatible with that 2-cell. Likewise, we can show that the
maps induced in this way are unique up to homotopy in a suitable sense.

Definition 3.22. Let X,Y, Z be objects in a 2-category K, and let p : X → Z, q : Y → Z be maps.
A map over Z from X to Y is a map from p to q in the slice 1-category K/Z, i.e. a map h : X → Y
such that qh = p. Given two such maps h, h′, a 2-cell over Z is a 2-cell τ : h =⇒ h′ such that
qτ = idp.
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Proposition 3.23 ([5, Lemma 3.1.5]). Let a, a′ : X → f ↓ g be a parallel pair of maps over B×C;
that is, a pair of maps such that p0a = p0a

′, p1a = p1a
′. Then a and a′ are isomorphic over B ×C

if and only if φa = φa′.

Proof. Let b : X → B, c : X → C denote the common composites p0a = p0a
′, p1a = p1a

′, respec-
tively. First suppose we have an isomorphism τ : a =⇒ a′ with p0τ = idB, p1τ = idc. Consider
the horizontal composite φτ ; by the 2-categorical interchange law, this is equal to φa′ ◦ fp0τ = φa′,
and also to gp1τ ◦ φa = φa. So φa′ = φa.

Now suppose that φa′ = φa. We have the identity 2-cells idb : p0a =⇒ p0a
′, idc : p1a =⇒ p1a

′,
and by assumption, the composites gidc ◦ φa = φa and φa′ ◦ f idb = φa′ are equal. Thus, by 2-cell
induction, there is a 2-cell τ : a =⇒ a′ such that p0τ = idb, p1τ = idc. This 2-cell must be an
isomorphism by conservativity. �

Next we’ll prove that the weak universal property of Proposition 3.20 defines the comma object
f ↓ g uniquely, up to equivalence over B×C; before doing this we must prove a simple 1-categorical
lemma.

Lemma 3.24. Let F : A → D, G : B → D be functors, with F an isofibration, and let K : A → B
be an equivalence of categories over D. Then for every object b ∈ B, there is an object a ∈ A such
that Fa = Gb, and an isomorphism β : Ka ∼= b such that Gβ = idGb.

Proof. Since K is essentially surjective, there is an object ã ∈ A and an automorphism β̃ : Kã ∼= b.
Thus, in D we have an isomorphism Gβ̃ : F ã ∼= Gb. Since F is an isofibration, we can lift this to
an isomorphism α : ã ∼= a in A with Fa = Gb, Fα = Gβ̃. Now let β = β̃ ◦Kα−1 : Ka ∼= b; then
Gβ = Gβ̃ ◦ Fα−1 = Gβ̃ ◦Gβ̃−1 = idGb, as desired. �

Proposition 3.25 ([5, Lemma 3.1.6(i)]). Let (p0, p1) : E � B × C, (p′0, p′1) : E′ � B × C be two
isofibrations in C, equipped with comma cones ψ : fp0 =⇒ gp1, ψ

′ : fp′0 =⇒ gp′1 satisfying the
weak universal property of Proposition 3.20. Then E and E′ are equivalent over B × C.

Proof. We can apply the 1-cell induction principle of E′ to the 2-cell ψ to get a map a : E → E′

such that p′0a = p0, p
′
1a = p1, ψ

′a = ψ; similarly, we have a map a′ : E′ → E such that p0a
′ =

p′0, p1a
′ = p′1, ψa

′ = ψ′.

Now consider the composite map a′a : E → E. We have p0a
′a = p′0a = p0, and likewise p1a

′a = p1,
so a′a and idE form a parallel pair over B × C. Furthermore, we have ψa′a = ψ′a = ψ, so we may
apply Proposition 3.23 to this pair to obtain an isomorphism idE ∼= a′a over B × C. By a similar
argument, we also have an isomorphism idE′ ∼= aa′ over B×C. Therefore, by Lemma 1.14 and the
2-out-of-6 property, both a and a′ are equivalences. �

Proposition 3.26 ([5, Lemma 3.1.6(ii)]). Let (p′0, p
′
1) : E � B×C be an isofibration in C such that

E and f ↓ g are weakly equivalent over B ×C. Then E has a comma cone satisfying the universal
property of Proposition 3.20.

Proof. First, we consider the case of a weak equivalence k : E → f ↓ g over B × C (meaning
(p0, p1)k = (p′0, p

′
1)). It suffices to show that for any X ∈ C, the composite functor HoC(X,E) →

HoC(X, f ↓ g)→ HoC(X, f) ↓ HoC(X, g) is smothering (the comma cone for E will then be φk). To
begin with, note that both functors in the composite are full, conservative, and essentially surjective
(the first because it is an equivalence of categories, the second because it is smothering), thus the
composite has these properties as well. To show that the composite is smothering, it remains to be
shown that it is surjective on objects.

Let (b : X → b, c : X → c, τ : fb =⇒ gc be an object of HoC(X, f) ↓ HoC(X, g). By 1-cell induction,
there is a map a : X → f ↓ g such that φa = τ .
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Now, HoC(X, k) : HoC(X,E)→ HoC(X, f ↓ g) is an equivalence of categories over HoC(X,B × C).
Therefore, by Lemma 3.24, for any map a : X → f ↓ g there is a map e : X → E such that
(p0, p1)ke = (p0, p1)a = (b, c) and a 2-cell µ : ke ∼= a such that (p0, p1)µ = id(b,c). Therefore, by
Proposition 3.23, φke = φa = τ . Thus e is a pre-image of (b, c, τ) under the composite functor.

Now suppose that we instead have an equivalence j : f ↓ g → E overB×C. Then HoC(E, j) : HoC(E, f ↓
g)→ HoC(E,E) is an equivalence of categories over HoC(E,B × C), so by Lemma 3.24, there is a
map l : E → f ↓ g with a 2-cell τ : jl ∼= idE such that (p′0, p

′
1)jl = (p′0, p

′
1) and (p′0, p

′
1)τ = id(p′0,p

′
1).

So jl is an equivalence by Lemma 1.14, thus l is an equivalence by 2-out-of-3. Furthermore, we
have (p0, p1)l = (p′0, p

′
1)kl = (p′0, p

′
1), so l is an equivalence over B × C. Thus this case reduces to

the previous case, and it is easy to see that any zigzag of weak equivalences over B × C between
f ↓ g and E reduces to this case as well. �

We have analogues in an ∞-cosmos of various familiar results involving comma categories.

Given a map l : C → B and a 2-cell λ : fl =⇒ g, we have a 2-cell λp1 ◦ gφ : fp0 =⇒ gp1; by 1-cell
induction, we thus obtain a map w : B ↓ l→ f ↓ g with φw = p1 ◦ gφ : fp0, i.e. a map over B ×C.

B ↓ l

p1

��

p0 //

φ

��

B

f

��

B ↓ l

p0





p1

��

w

��

λ

��

= f ↓ g

p0||

p1

""
C

l

;;

g // A B
φ +3

f ""

C

g
||

A

Proposition 3.27 ([5, Proposition 3.4.2]; see also [6, Proposition 5.1.3 and Proposition 5.1.8]).
For l, λ as above, λ witnesses l as an absolute right lifting of g along f if and only if w is an
equivalence. Furthermore, this correspondence induces a bijection between absolute right lifting
diagrams and isomorphism classes of maps B ↓ l→ f ↓ g over B × C.

We have the following immediate consequences of this result:

Corollary 3.28 ([5, Proposition 3.5.1]). Let f : B → A, u : A→ B be maps in C. Then there is an
equivalence w : B ↓ u→ f ↓ A over B ×A if and only if f a u.

Proof. By Proposition 3.5, there is an absolute right lifting cell ε : fu =⇒ idA if and only if f a u;
by Proposition 3.27, such a cell exists if and only if there is an equivalence as described in the
statement. �

Corollary 3.29 ([5, Proposition 3.5.3]). Let A ∈ C, J ∈ sSet, and let l : ∗ → A, d : ∗ → AJ be maps
in C. Then l defines a limit of d if and only if there is a weak equivalence A ↓ l→ ∆ ↓ d over A.

Proof. Unwinding the definition, the statement that l is a limit of d means that we have an absolute
right lifting cell λ : ∆l =⇒ d. The statement then follows immediately from Proposition 3.27. �

Finally, we can show that comma objects are invariant under isomorphism of the maps involved:

Proposition 3.30 ([5, Exercise 3.6.1]). Let τ : f ∼= f ′ : B → A, µ : g ∼= g′ : C → A. Then there is
an equivalence f ↓ g → f ′ ↓ g′ over B × C.

Proof. The composite 2-cell µp1 ◦ φ ◦ τp0 : f ′p0 =⇒ g′p1 defines a comma cone for f ↓ g with
respect to f ′ and g′; we can show that this satisfies the weak universal property of Proposition 3.20
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using the corresponding properties of φ with respect to f and g. Thus there is an equivalence
f ↓ g → f ′ ↓ g′ over B × C by Proposition 3.25. �

3.4. Groupoidal objects. The concept of an ∞-groupoid also has an analogue in an ∞-cosmos.

Lemma 3.31 ([5, Definition 3.2.2]). Let A be an object in an∞-cosmos C. The following conditions
are equivalent:

(1) For every X ∈ C, every category HoC(X,A) is a groupoid;
(2) For every X ∈ C, every mapping space C(X,A) is a Kan complex;

(3) The isofibration AJ � A∆1
is trivial.

Proof. A quasi-category X is a Kan complex if and only if all of its edges are invertible, which in
turn holds if and only if HoX is a groupoid; thus (1) and (2) are equivalent.

Now, by the defining property of the cotensor, conditon (3) is equivalent to the statement that

C(X,A)J → C(X,A)∆1
is a trivial fibration for all X ∈ C. If this is the case, then in particular,

this map is surjective on vertices, so every map ∆1 → C(X,A) factors through J . Thus every edge
of the quasi-category C(X,A) is invertible, so it is a Kan complex. Thus (3) =⇒ (2).

On the other hand, suppose (2) holds. Then for any X, since C(X,A) is a Kan complex and ∆1 ↪→ J

is a trivial cofibration in the Quillen model structure, the induced map C(X,A)J → C(X,A)∆1
is a

trivial fibration. Thus (2) =⇒ (3). �

Definition 3.32. An object A in an∞-cosmos C is groupoidal if it satisfies the equivalent conditions
of Lemma 3.31.

4. Equivalences of ∞-cosmoi

Having seen analogues of many familiar categorical results and constructions in an ∞-cosmos, we
now turn our attention to functors between ∞-cosmoi. We will show that all of the constructions
we’ve just seen are preserved and reflected by a certain class of functors between ∞-cosmoi, the
equivalences. This leads to the principle of model-independence, that theorems which can be phrased
in terms of these constructions can be transferred along equivalences from one∞-cosmos to another.

Definition 4.1. A functor of ∞-cosmoi is a functor between ∞-cosmoi C → D which preserves
isofibrations, the terminal object, cotensors, and pullbacks along isofibrations.

Definition 4.2. A functor of ∞-cosmoi F : C → D is an equivalence of ∞-cosmoi if:

(1) F is surjective on objects up to equivalence;
(2) Each map F : C(X,Y )→ D(FX,FY ) is an equivalence of ∞-categories.

Our standard method of constructing ∞-cosmoi also gives us a source of functors of ∞-cosmoi:

Example 4.3. If C is a model category enriched over sSetJoyal via the construction of Corollary 2.4,
then the right adjoint C → sSetJoyal, restricted to the full subcategory of fibrant objects of C, defines
a map of ∞-cosmoi, which is an equivalence if the adjunction is a Quillen equivalence. �

In particular, we have the following concrete example.

Example 4.4 ([4, Corollary E.1.2]). The functor CSS → qCat sending a complete Segal space X
to the quasi-category X0 is an equivalence of ∞-cosmoi.

We begin by recording features of an ∞-cosmos which are preserved by any functor of ∞-cosmoi.
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Proposition 4.5 ([5, Proposition 3.6.1]). Let F : C → D be a functor of ∞-cosmoi. Then the
induced 2-functor HoF : HoC → HoD preserves adjunctions, equivalences, isofibrations, trivial fi-
brations, groupoidal objects, products, and comma objects.

Proof. The general 2-categorical definition of an adjunction implies that they are preserved by any
2-functor. Likewise, Corollary 1.17 shows that an equivalence in C is precisely an equivalence in
HoC in the general 2-categorical sense, and these are also preserved by any 2-functor. Preserv-
ing isofibrations is one of the axioms of Definition 4.1. Preserving trivial fibrations follows from
preserving isofibrations and equivalences.

To see that groupoidal objects are preserved, recall the condition (3) of Lemma 3.31. Because F

preserves cotensors and trivial fibrations, if A∆1 → A is a trivial fibration then so is FA∆1 → FA.

The axioms of Definition 4.1 require that F preserve products in C, so F (A × B) ∼= FA × FB.
By the definition of a simplicial limit, this means that for any X ∈ D,D(X,F (A × B)) ∼=
D(X,FA) × D(X,FB). Recalling that the homotopy category functor preserves products, this
implies HoD(X,F (A×B)) ∼= HoD(X,FA)×HoD(X,FB), so F (A×B) is the product of FA and
FB in the 2-category HoD.

Finally, recall that by Proposition 3.25 and Proposition 3.26, an object E ∈ C equipped with
an isofibration E � B × C is a comma object for a pair of maps f : B → A, g : C → A if
and only if it is equivalent over B × C to the object f ↓ g constructed by the pullback formula
of Definition 3.15. Preservation of comma objects thus follows from preservation of products,
pullbacks, and equivalences. �

We can show that an equivalence of∞-cosmoi preserves and reflects many categorical constructions
and properties of objects:

Theorem 4.6 ([5, Proposition 3.6.4]). Let F : C → D be an equivalence of ∞-cosmoi. Then:

(1) The induced functor on homotopy 2-categories HoF is a biequivalence: it is surjective on
objects up to equivalence and each map HoC(A,B) → HoD(FA,FB) is an equivalence of
categories;

(2) HoF induces a bijection on isomorphism classes of parallel morphisms;
(3) F preserves and reflects equivalences: a map f : A → B in C is an equivalence if and only

if Ff : FA→ FB is an equivalence in D;
(4) F preserves and reflects equivalence: two objects A,B ∈ C are equivalent if and only if FA

and FB are equivalent in D;
(5) F preserves and reflects groupoidal objects;
(6) F preserves and reflects comma objects: given an isofibration (q0, q1) : E � B×C, there is

an equivalence E → f ↓ g over B × C if and only if there is an equivalence FE → F (f ↓
g) ∼= Ff ↓ Fg over FB × FC.

Proof. For (1), surjectivity on objects up to equivalence is immediate from axiom (1) of Defini-
tion 4.2, while inducing equivalences on mapping categories is immediate from axiom (2) of Defini-
tion 4.2 and the fact that an equivalence of ∞-categories induces a weak equivalence on homotopy
categories. Statement (2) follows immediately from (1): each functor HoC(A,B)→ HoD(FA,FB)
induces a bijection on isomorphism classes of objects as an equivalence of categories.

Statement (3) follows from (2) together with Corollary 1.17: for a map w : A → B in C, there
exists w′ : B → A with ww′ ∼= idB, w

′w ∼= idA if and only if there exists v : FB → FA with
(Fw)v ∼= idFB, vFw ∼= idFA. Likewise, there exists a pair of homotopy-inverse maps A→ B,B → A
if and only if there exists such a pair FA→ FB,FB → FA, proving (4). Statement (5) then follows

from condition (3) of Lemma 3.31 and the fact that F preserves cotensors: for A ∈ C, A∆1 → A is

an equivalence if and only if FA∆1 → FA is an equivalence in D.
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Finally, we consider statement (6). We have already shown, in Proposition 4.5, that F preserves
comma objects, so we only need to show that it preserves them. Let HoCB×C(E, f ↓ g) denote the
category of maps E → f ↓ g over B × C, that is, the subcategory of HoC whose objects are maps
k : E → f ↓ g with (p0, p1)k = (q0, q1) and whose morphisms are 2-cells τ such that (p0, p1)τ =
id(q0,q1). Then HoCB×C(E, f ↓ g) is the pullback object of the maps HoC(E, (p0, p1) : HoC(E, f ↓
g) → HoC(E,B × C) and (q0, q1) : 1 → HoC(E,B × C) (where 1 denotes the terminal category).
We thus have the following equivalence of cospans in Cat:

1 // HoC(E,B × C)

∼
��

HoC(E, f ↓ g)oooo

∼
��

1 // HoD(FE,FB × FC) HoD(E, f ↓ g)oooo

In the standard model structure on Cat, all categories are fibrant. Furthermore, HoC(E, f ↓ g) �
HoC(E,B × C) is an isofibration since f ↓ g → B × C is an isofibration in C, and the same holds
for HoD(FE,Ff ↓ Fg) � HoD(FE,FB × FC). Thus, by the cogluing lemma, HoCB×C(E, f ↓
g)→ HoDFB×FC(FE,Ff ↓ Fg) is an equivalence of categories. So suppose there is an equivalence
v : FE → Ff ↓ Fg over B × C; then by essential surjectivity, there is a map w : E → f ↓ g
over B × C whose image under F is isomorphic to v over B × C. Then Fw is an equivalence by
Lemma 1.14, so w is an equivalence. Thus E is a comma object for f and g by Proposition 3.26. �

In particular, theorems phrased in terms of adjunctions, limits and colimits can be transferred
along an equivalence of ∞-groupoids.

Theorem 4.7 ([5, Theorem 3.6.6]). Let F : C → D be an equivalence of ∞-categories. Then:

(1) For a pair of maps f : B → A, u : A→ B in C, we have f a u if and only if Ff a Fu;
(2) A map f : A → B in C has a left (resp. right) adjoint if and only if Ff has a left (resp.

right) adjoint;
(3) An element l : ∗ → A is a limit of a diagram d : ∗ → AJ if and only if Fl is a limit of Fd;
(4) A diagram d : ∗ → AJ has a limit if and only if Fd has a limit.

Proof. For (1), by Corollary 3.28, f a u if and only if there is an equivalence B ↓ u → f ↓ A over
B × A; statement (6) of Theorem 4.6 shows that F preserves and reflects the existence of such a
map. For (2), we already know that F preserves adjunctions, so suppose that Ff has a right adjoint
v : FA → FB, i.e. there is an equivalence Ff ↓ FA → FB ↓ v over FB × FA. By statement (2)
of Theorem 4.6, there is a map u : B → A such that Fu ∼= v. Therefore, by Proposition 3.30, we
have an equivalence FB ↓ v → FB ↓ Fu over FB × FA. Composing these two equivalences, we
obtain an equivalence Ff ↓ FA→ FB ↓ Fu over FB × FA, meaning that Ff a Fu, and so f a u
by (1). The proof for the case where Ff has a left adjoint is similar.

We can prove (3) and (4) by a similar argument, using Corollary 3.29 in place of Corollary 3.28. �
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