Cubical models of $(\infty,1)\text{-}\mathsf{categories}$ Joint work with Chris Kapulkin, Zachery Lindsey, and Christian Sattler

Brandon Doherty

University of Western Ontario

June 15, 2020

Conclusions

Theorem

The category cSet of cubical sets with connections carries a model structure that presents the homotopy theory of $(\infty, 1)$ -categories, which is equivalent to the Joyal model structure via triangulation.

References

- Kapulkin, Lindsey, Wong, A co-reflection of cubical sets into simplicial sets with applications to model structures, New York Journal of Mathematics 25 (2019), 627–641.
- ▶ D., Kapulkin, Lindsey, Sattler, Cubical models of (∞, 1)-categories, 2020. arXiv:2005.04853

Model categories

A model structure on a bicomplete category consists of:

- $\xrightarrow{\sim}$ weak equivalences;
- ► → cofibrations;
- ► → fibrations

such that:

- All classes closed under retracts;
- Weak equivalences satisfy 2-out-of-3;
- Every map admits factorizations :

A lift exists in any diagram

where either vertical map is a weak equivalence.

Model categories

Given a model category $\mathcal{M},$ we can define:

▶ homotopy category Ho \mathcal{M} (obtained by inverting $\xrightarrow{\sim}$);

- cofibrant objects (those with $\varnothing \longrightarrow X$);
- **• fibrant** objects (those with $X \longrightarrow *$);
- cofibrant and fibrant replacement ($X^{Cof} \longrightarrow X$ and $Y \longrightarrow Y^{Fib}$);
- homotopies between morphisms $(f \sim g)$.

This allows us to characterize the homotopy category of $\ensuremath{\mathcal{M}}$ as:

$$\mathsf{Ho}\,\mathcal{M}\simeq\mathcal{M}_{\mathsf{Cof-Fib}}/\sim$$

Quillen functors

A Quillen adjunction between model categories ${\mathcal M}$ and ${\mathcal N}$ is an adjunction

such that:

▶ *L* preserves \longrightarrow and $\xrightarrow{\sim}$; equivalently, ▶ *R* preserves \longrightarrow and $\xrightarrow{\sim}$.

This induces $Ho\mathcal{M} \rightleftharpoons Ho\mathcal{N}$ (the **derived adjunction**).

 $L \dashv R$ is a **Quillen equivalence** if the derived adjunction is an equivalence.

Simplicial sets

The simplex category Δ :

- objects are $[n] = \{0 \le 1 \le ... \le n\};$
- morphisms are order-preserving maps.

Simplicial sets are presheaves on Δ

$$sSet := Fun(\Delta^{op}, Set),$$

and are pieced together from standard simplices:

Quillen model structure

The category sSet := Fun(Δ^{op} , Set) carries a model structure:

- cofibrations = monomorphisms;
- ▶ fibrant objects = Kan complexes (a.k.a. ∞-groupoids);
- weak equivalences = weak homotopy equivalences.

Voevodsky's simplicial model of HoTT represents types as Kan complexes.

Quillen model structure

The category sSet := Fun(Δ^{op} , Set) carries a model structure:

- cofibrations = monomorphisms;
- ▶ fibrant objects = Kan complexes (a.k.a. ∞-groupoids);
- weak equivalences = weak homotopy equivalences.

A homotopy $H: f \sim g$ between $f, g: X \rightarrow Y$ is $H: \Delta^1 \times X \rightarrow Y$ restricting to [f, g] at the endpoints.

A map $f: X \to Y$ of Kan complexes is a **homotopy equivalence** if there is $g: Y \to X$ with homotopies $fg \sim id$ and $gf \sim id$.

A map $K \to L$ is a **weak homotopy equivalence** if $X^L \to X^K$ is a homotopy equivalence for each X Kan.

Joyal model structure

sSet carries another model structure:

- cofibrations = monomorphisms;
- ▶ fibrant objects = quasicategories (a.k.a. (∞, 1)-categories);
- weak equivalences = weak categorical equivalences.

These are the inner horns, e.g.,

Joyal model structure

sSet carries another model structure:

- cofibrations = monomorphisms;
- ▶ fibrant objects = quasicategories (a.k.a. (∞, 1)-categories);
- weak equivalences = weak categorical equivalences.

The homotopies are given using

$$J = \bigcup_{i=1}^{n} \bigcup_{i=1}^{n}$$

i.e. a homotopy of maps $X \to Y$ is $H: J \times X \to Y$.

A map $f: X \to Y$ of quasicategories is a **categorical equivalence** if there is $g: Y \to X$ with homotopies $fg \sim id$ and $gf \sim id$.

A map $K \to L$ is a **weak categorical equivalence** if $X^L \to X^K$ is a categorical equivalence for each quasicategory X.

Cubical sets

The **box category** \square :

• objects are $[1]^n = \{0 \le 1\}^n$;

morphisms are some subset of order-preserving maps.

Cubical sets are presheaves on \Box

$$cSet := Fun(\Box^{op}, Set),$$

and are pieced together from standard cubes:

Cubical sets

In our work, maps in \Box are generated by:

- face and degeneracy maps
- connections (max)

The geometric product

The Cartesian product of cubical sets is not well-behaved, e.g. $\Box^1\times\Box^1\neq\Box^2.$

Instead we work with the geometric product.

Grothendieck model structure

cSet carries a model structure:

- cofibrations = monomorphisms;
- ▶ fibrant objects = cubical Kan complexes (a.k.a. ∞-groupoids);
- weak equivalences = weak homotopy equivalences.

Grothendieck model structure

cSet carries a model structure:

- cofibrations = monomorphisms;
- ▶ fibrant objects = cubical Kan complexes (a.k.a. ∞-groupoids);
- weak equivalences = weak homotopy equivalences.
- A homotopy of maps $X \to Y$ is $H \colon \Box^1 \otimes X \to Y$.

A map $f: X \to Y$ of cubical Kan complexes is a **homotopy** equivalence if there is $g: Y \to X$ with homotopies $fg \sim id$ and $gf \sim id$.

A map $K \to L$ is a **weak homotopy equivalence** if $X^L \to X^K$ is a homotopy equivalence for each cubical Kan complex X.

Comparing cSet and sSet: Triangulation

We define $T: cSet \rightarrow sSet$ by Kan extension:

T has a right adjoint U given by $(UX)_n = sSet((\Delta^1)^n, X)$.

Theorem (Cisinski)

 $T \dashv U$ is a Quillen equivalence between the Grothendieck model structure on cSet and the Quillen model structure on sSet.

Inner open boxes

Goal: construct a cubical analogue of sSet_{\rm Joyal}, Quillen-equivalent via triangulation.

What's an inner open box?

Solution: require critical edges to be degenerate!

Cubical quasicategories

A cubical quasicategory is $X \in cSet$ having the RLP against inner open box fillings.

In particular, this lets us "compose" edges.

Cubical quasicategories

A cubical quasicategory is $X \in cSet$ having the RLP against inner open box fillings.

In particular, this lets us "compose" edges.

The cubical Joyal model structure

Theorem

cSet carries a model structure:

- Cofibrations are monomorphisms;
- Fibrant objects are cubical quasicategories;
- ► Weak equivalences are weak categorical equivalences.

The cubical Joyal model structure

Homotopies are given using

i. e. a homotopy of maps $X \to Y$ is $H \colon K \otimes X \to Y$.

A map $f: X \to Y$ of cubical quasicategories is a **categorical** equivalence if there is $g: Y \to X$ with homotopies $fg \sim id$ and $gf \sim id$.

A map $K \to L$ is a **weak categorical equivalence** if $X^L \to X^K$ is a categorical equivalence for each cubical quasicategory X.

Application: the fundamental theorem

Theorem (Fundamental Theorem of Category Theory) A functor $F : C \to D$ is an equivalence of categories \Leftrightarrow it is full, faithful, and essentially surjective.

Theorem

A cubical map $f: X \to Y$ of cubical quasicategories is a categorical equivalence \Leftrightarrow

- ▶ it induces a homotopy equivalence $Map(x, y) \rightarrow Map(fx, fy)$;
- it is essentially surjective on vertices.

Here, the mapping space is defined by

$$\mathsf{Map}(x,y)_n = \left\{ \Box^{n+1} \xrightarrow{\sigma} X \mid \sigma \partial_{n+1,0} = x \text{ and } \sigma \partial_{n+1,1} = y \right\}$$

This definition gives a more workable approach than ${\rm Hom}^{\rm R}$ and ${\rm Hom}^{\rm L}$ from "Higher Topos Theory".

Triangulation

Theorem $T : cSet_{Joyal} \rightleftharpoons sSet_{Joyal} : U \text{ is a Quillen adjunction.}$

It would be hard to show directly that $T \dashv U$ is a Quillen equivalence.

We show $Q : sSet \rightleftharpoons cSet : \int is a Quillen equivalence, and that the derived functors of <math>T$ and Q are inverses.

The functor $Q^{\bullet} \colon \Delta \to \mathsf{cSet}$

Define quotients of the standard cubes:

The functor $Q^{\bullet} \colon \Delta \to cSet$

Crucially using connections, we have:

i.e., the Q^{n} 's form a co-simplicial object!

The functor $Q^{\bullet} \colon \Delta \to cSet$

 $Q^{\bullet}: \Delta \rightarrow cSet$ defines a functor sending [n] to Q^{n} .

Using Q^{\bullet} , we obtain an adjunction:

The right adjoint \int is given by $(\int X)_n = cSet(Q^n, X)$.

The adjunction $Q \dashv \int$

Theorem (Kapulkin-Lindsey-Wong) $Q \dashv \int defines \ a \ co-reflective \ inclusion \ of \ sSet \ into \ cSet.$

l.e.:

• The functor $Q: sSet \rightarrow cSet$ is fully faithful.

► For each $X \in$ sSet, the unit $\eta_X : X \to \int QX$ is an isomorphism.

For each $X \in$ cSet, the counit $Q \int X \to X$ is a monomorphism. $Q \int X$ is the "maximal simplicial set contained in X".

$T \dashv U$ as a Quillen equivalence

We can show that $Q \dashv \int$ is a Quillen equivalence.

We have a natural weak categorical equivalence $TQ \implies$ id:

This gives a natural isomorphism of the derived functors, showing that $T \dashv U$ is a Quillen equivalence as well.

Other results

- ► Two more models of (∞, 1)-categories: marked cubical sets and structurally marked cubical sets.
- Theory of cones in cubical sets.
- New proof that T ⊢ U is a Quillen equivalence between the Quillen and Grothendieck model structures.
- New proof of the fundamental theorem for quasicategories.