
Cubical models of (∞, 1)-categories
Joint work with Chris Kapulkin, Zachery Lindsey, and Christian

Sattler

Brandon Doherty

University of Western Ontario

June 15, 2020

1 / 29



Conclusions

Theorem
The category cSet of cubical sets with connections carries a model
structure that presents the homotopy theory of (∞, 1)-categories,
which is equivalent to the Joyal model structure via triangulation.
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Model categories
A model structure on a bicomplete category consists of:

I ∼ weak equivalences;

I cofibrations;

I fibrations

such that:

I All classes closed under retracts;

I Weak equivalences satisfy 2-out-of-3;

I Every map admits factorizations :
// ∼ // // // , // // ∼ // //

I A lift exists in any diagram

·��

��

// ·

����
· // ·

where either vertical map is a weak equivalence.
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Model categories

Given a model category M, we can define:

I homotopy category HoM (obtained by inverting
∼ );

I cofibrant objects (those with ∅ X );

I fibrant objects (those with X ∗ );

I cofibrant and fibrant replacement ( XCof X∼ and

Y Y Fib∼ );

I homotopies between morphisms (f ∼ g).

This allows us to characterize the homotopy category of M as:

HoM'MCof-Fib/ ∼
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Quillen functors

A Quillen adjunction between model categories M and N is an
adjunction

M
L ))a N
R

jj

such that:

I L preserves and ∼ ; equivalently,

I R preserves and ∼ .

This induces HoM� HoN (the derived adjunction).

L a R is a Quillen equivalence if the derived adjunction is an
equivalence.
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Simplicial sets

The simplex category ∆:

I objects are [n] = {0 ≤ 1 ≤ ... ≤ n};
I morphisms are order-preserving maps.

Simplicial sets are presheaves on ∆

sSet := Fun(∆op,Set),

and are pieced together from standard simplices:

1

��

��
1

��

2

��
0 0 // 1 0

@@

// 2 0

GG

@@

// 3
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Quillen model structure

The category sSet := Fun(∆op,Set) carries a model structure:

I cofibrations = monomorphisms;

I fibrant objects = Kan complexes (a.k.a. ∞-groupoids);

I weak equivalences = weak homotopy equivalences.

X Kan complex ⇔

Λn
k X

∆n

for 0 ≤ k ≤ n

Voevodsky’s simplicial model of HoTT represents types as Kan
complexes.
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Quillen model structure

The category sSet := Fun(∆op,Set) carries a model structure:

I cofibrations = monomorphisms;

I fibrant objects = Kan complexes (a.k.a. ∞-groupoids);

I weak equivalences = weak homotopy equivalences.

A homotopy H : f ∼ g between f , g : X → Y is H : ∆1 × X → Y
restricting to [f , g ] at the endpoints.

A map f : X → Y of Kan complexes is a homotopy equivalence
if there is g : Y → X with homotopies fg ∼ id and gf ∼ id.

A map K → L is a weak homotopy equivalence if X L → XK is a
homotopy equivalence for each X Kan.
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Joyal model structure
sSet carries another model structure:
I cofibrations = monomorphisms;
I fibrant objects = quasicategories (a.k.a. (∞, 1)-categories);
I weak equivalences = weak categorical equivalences.

X quasicategory ⇔

Λn
k X

∆n

for 0 < k < n

These are the inner horns, e.g.,

0

1

2

Λ2
1

3

, 0

1

2

Λ2
0

7

, 0

1

2

Λ2
2

7
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Joyal model structure
sSet carries another model structure:

I cofibrations = monomorphisms;

I fibrant objects = quasicategories (a.k.a. (∞, 1)-categories);

I weak equivalences = weak categorical equivalences.

The homotopies are given using

J =

· ·

· ·

i.e. a homotopy of maps X → Y is H : J × X → Y .

A map f : X → Y of quasicategories is a categorical equivalence
if there is g : Y → X with homotopies fg ∼ id and gf ∼ id.

A map K → L is a weak categorical equivalence if X L → XK is
a categorical equivalence for each quasicategory X .
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Cubical sets
The box category �:

I objects are [1]n = {0 ≤ 1}n;

I morphisms are some subset of order-preserving maps.

Cubical sets are presheaves on �

cSet := Fun(�op,Set),

and are pieced together from standard cubes:

0 , 0 1 , 00 01

10 11

, 000 001

010

100

110

011

101

111

,
. . .
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Cubical sets

In our work, maps in � are generated by:

I face and degeneracy maps

I connections (max)

· ·

· ·

·

·

· ··

·
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The geometric product

The Cartesian product of cubical sets is not well-behaved, e.g.
�1 ×�1 6= �2.

Instead we work with the geometric product.

�×�
([1]m,[1]n)7→�m+n

//
� _

��

cSet

cSet× cSet

⊗

44
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Grothendieck model structure

cSet carries a model structure:

I cofibrations = monomorphisms;

I fibrant objects = cubical Kan complexes (a.k.a. ∞-groupoids);

I weak equivalences = weak homotopy equivalences.

X Kan complex ⇔

unk,ε X

�n

for ε = 0, 1, and 1 ≤ k ≤ n.
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Grothendieck model structure

cSet carries a model structure:

I cofibrations = monomorphisms;

I fibrant objects = cubical Kan complexes (a.k.a. ∞-groupoids);

I weak equivalences = weak homotopy equivalences.

A homotopy of maps X → Y is H : �1 ⊗ X → Y .

A map f : X → Y of cubical Kan complexes is a homotopy
equivalence if there is g : Y → X with homotopies fg ∼ id and
gf ∼ id.

A map K → L is a weak homotopy equivalence if X L → XK is a
homotopy equivalence for each cubical Kan complex X .
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Comparing cSet and sSet: Triangulation

We define T : cSet→ sSet by Kan extension:

·

��

//

��

·

��

�
[1]n 7→(∆1)n //

��

sSet

· // · cSet
T

77

T has a right adjoint U given by (UX )n = sSet((∆1)n,X ).

Theorem (Cisinski)

T a U is a Quillen equivalence between the Grothendieck model
structure on cSet and the Quillen model structure on sSet.
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Inner open boxes
Goal: construct a cubical analogue of sSetJoyal, Quillen-equivalent
via triangulation.

What’s an inner open box?

· ·

· ·

· ·

· ·

· ·

· ·

· ·

· ·

Solution: require critical edges to be degenerate!

· ·

· ·

· ·

· ·

· ·

· ·

· ·

· ·
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Cubical quasicategories

A cubical quasicategory is X ∈ cSet having the RLP against
inner open box fillings.

In particular, this lets us “compose” edges.

y
g // z u2

2,0� _

��

// X

��
x

f

OO

z �2 // �0
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Cubical quasicategories

A cubical quasicategory is X ∈ cSet having the RLP against
inner open box fillings.

In particular, this lets us “compose” edges.

y
g // z u2

2,0� _

��

// X

��
x

f

OO

gf // z �2 //

>>

�0

19 / 29



The cubical Joyal model structure

Theorem
cSet carries a model structure:

I Cofibrations are monomorphisms;

I Fibrant objects are cubical quasicategories;

I Weak equivalences are weak categorical equivalences.
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The cubical Joyal model structure

Homotopies are given using

K =

· // ·

��

·

· · // ·
i. e. a homotopy of maps X → Y is H : K ⊗ X → Y .

A map f : X → Y of cubical quasicategories is a categorical
equivalence if there is g : Y → X with homotopies fg ∼ id and
gf ∼ id.

A map K → L is a weak categorical equivalence if X L → XK is
a categorical equivalence for each cubical quasicategory X .
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Application: the fundamental theorem

Theorem (Fundamental Theorem of Category Theory)

A functor F : C → D is an equivalence of categories ⇔ it is full,
faithful, and essentially surjective.

Theorem
A cubical map f : X → Y of cubical quasicategories is a
categorical equivalence ⇔
I it induces a homotopy equivalence Map(x , y)→ Map(fx , fy);

I it is essentially surjective on vertices.

Here, the mapping space is defined by

Map(x , y)n =
{
�n+1 σ→ X | σ∂n+1,0 = x and σ∂n+1,1 = y

}
This definition gives a more workable approach than HomR and
HomL from “Higher Topos Theory”.
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Triangulation

Theorem
T : cSetJoyal � sSetJoyal : U is a Quillen adjunction.

It would be hard to show directly that T a U is a Quillen
equivalence.

We show Q : sSet� cSet :
∫

is a Quillen equivalence, and that
the derived functors of T and Q are inverses.
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The functor Q• : ∆→ cSet
Define quotients of the standard cubes:

Q0 = · Q1 = · ·

Q2 =

·

·

·

·

=

·

·

·
·

Q3 =

·

· ·

·

· ·

··
=

·

·

·
·

·

·
··
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The functor Q• : ∆→ cSet

Crucially using connections, we have:

·

· ·
·

· ·

i.e., the Qn’s form a co-simplicial object!
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The functor Q• : ∆→ cSet

Q• : ∆→ cSet defines a functor sending [n] to Qn.

Using Q•, we obtain an adjunction:

sSet cSet

∆

Q

∫a
Q•

The right adjoint
∫

is given by (
∫
X )n = cSet(Qn,X ).
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The adjunction Q a
∫

Theorem (Kapulkin-Lindsey-Wong)

Q a
∫

defines a co-reflective inclusion of sSet into cSet.

sSet cSet

Q

∫

a

I.e.:

I The functor Q : sSet→ cSet is fully faithful.

I For each X ∈ sSet, the unit ηX : X →
∫
QX is an

isomorphism.

For each X ∈ cSet, the counit Q
∫
X → X is a monomorphism.

Q
∫
X is the “maximal simplicial set contained in X”.
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T a U as a Quillen equivalence

We can show that Q a
∫

is a Quillen equivalence.

We have a natural weak categorical equivalence TQ =⇒ id:

·

��

·

��

7→

· //

GG

��
· ·

GG

// ·

This gives a natural isomorphism of the derived functors, showing
that T a U is a Quillen equivalence as well.
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Other results

I Two more models of (∞, 1)-categories: marked cubical sets
and structurally marked cubical sets.

I Theory of cones in cubical sets.

I New proof that T a U is a Quillen equivalence between the
Quillen and Grothendieck model structures.

I New proof of the fundamental theorem for quasicategories.
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