Cubical models of $(\infty,1)$ -categories Joint work with Chris Kapulkin, Zachery Lindsey, and Christian Sattler

Brandon Doherty

University of Western Ontario

December 5, 2020

Conclusions

Theorem

The category cSet of cubical sets with connections carries a model structure that presents the homotopy theory of $(\infty,1)$ -categories, which is equivalent to the Joyal model structure via triangulation.

References

▶ D., Kapulkin, Lindsey, Sattler, *Cubical models of* $(\infty, 1)$ -categories, 2020. arXiv:2005.04853

Cubical sets

The **box category** \square :

- objects are $[1]^n = \{0 \le 1\}^n$;
- morphisms are some subset of order-preserving maps.

Cubical sets are presheaves on \square

$$\mathsf{cSet} := \mathsf{Fun}(\Box^{\mathsf{op}}, \mathsf{Set}),$$

and are pieced together from **standard cubes** \square^n , $n \ge 0$:

Cubical sets

In our work, maps in \square are generated by:

- face and degeneracy maps
- connections (max and min)

The geometric product

The Cartesian product of cubical sets is not well-behaved, e.g. $\square^m \times \square^n \ncong \square^{m+n}$.

Instead we work with the geometric product.

Why study cSet?

- Simplification
 - $ightharpoonup \square^m \otimes \square^n \cong \square^{m+n}$ (easier to construct homotopies)
 - Straightening (Kapulkin-Voevodsky '18)

► Applications to type theory (CCHM '16)

Grothendieck model structure

cSet carries a model structure:

- cofibrations = monomorphisms;
- ▶ homotopy: geometric product with \Box^1
 - ▶ I.e. a homotopy of maps $X \to Y$ is a map $\square^1 \otimes X \to Y$
 - ► From this we get homotopy equivalences, weak equivalences by standard techniques
- fibrations = RLP with respect to open box fillings

Comparing cSet and sSet: Triangulation

We define $T: \mathsf{cSet} \to \mathsf{sSet}$ by Kan extension:

T has a right adjoint U given by $(UX)_n = sSet((\Delta^1)^n, X)$.

Theorem (Cisinski)

 $T \dashv U$ is a Quillen equivalence between the Grothendieck model structure on cSet and the Quillen model structure on sSet.

Inner open boxes

Goal: construct a cubical analogue of sSet $_{\rm Joyal}$, Quillen-equivalent via triangulation.

What's an inner open box?

Solution: require critical edges to be degenerate!

Cubical quasicategories

A **cubical quasicategory** is $X \in \mathsf{cSet}$ having fillers for inner open boxes.

In particular, this lets us "compose" edges.

Cubical quasicategories

A **cubical quasicategory** is $X \in \mathsf{cSet}$ having fillers for inner open boxes.

In particular, this lets us "compose" edges.

The cubical Joyal model structure

Theorem (D.-Kapulkin-Lindsey-Sattler)

cSet carries a model structure:

- Cofibrations are monomorphisms;
- Fibrant objects are cubical quasicategories;
- ► Homotopy: geometric product with

i. e. a homotopy of maps $X \to Y$ is $H \colon K \otimes X \to Y$.

Main result

Theorem (D.-Kapulkin-Lindsey-Sattler)

The adjunction $T: \mathsf{cSet} \rightleftarrows \mathsf{sSet}: U$ is a Quillen equivalence between the Joyal and cubical Joyal model structures.

category \setminus theory	∞ -groupoids	$(\infty,1)$ -categories
sSet	Quillen	Joyal
cSet	Grothendieck	cubical Joyal

Other results

- Two more models of $(\infty, 1)$ -categories: marked cubical sets and structurally marked cubical sets.
- ► Theory of cones in cubical sets.
- Definitions of homotopy categories and mapping spaces for cubical quasicategories, and characterization of equivalences of cubical quasicategories in terms of these concepts.
 - ▶ New proof of the analogous result for simplicial sets.