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Conclusions

Theorem

The category cSet of cubical sets with connections carries a model
structure that presents the homotopy theory of (oo, 1)-categories,
which is equivalent to the Joyal model structure via triangulation.
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Cubical sets
The box category [1:
» objects are [1]" = {0 < 1}";
» morphisms are some subset of order-preserving maps.

Cubical sets are presheaves on [J
cSet := Fun([J°P, Set),
and are pieced together from standard cubes (1”7, n > O:
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Cubical sets

In our work, maps in [J are generated by:
> face and degeneracy maps

» connections (max and min)
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The geometric product

The Cartesian product of cubical sets is not well-behaved, e.g.
Om x On z Om+n,

Instead we work with the geometric product.

m n m-+n
0 x O — D=0 > cSet

—

cSet x cSet
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Why study cSet?

» Simplification
> (0™ @ [" = ™" (easier to construct homotopies)

» Straightening (Kapulkin-Voevodsky '18)

> Applications to type theory (CCHM '16)
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Grothendieck model structure

cSet carries a model structure:
» cofibrations = monomorphisms;

» homotopy: geometric product with [

» l.e. a homotopy of maps X — Yisamap '@ X — Y
» From this we get homotopy equivalences, weak equivalences by
standard techniques

> fibrations = RLP with respect to open box fillings
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Comparing cSet and sSet: Triangulation
We define T : cSet — sSet by Kan extension:

[1]"—(A1)"

N

T has a right adjoint U given by (UX), = sSet((A!)", X).

Theorem (Cisinski)
T = U is a Quillen equivalence between the Grothendieck model
structure on cSet and the Quillen model structure on sSet.
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Inner open boxes

Goal: construct a cubical analogue of sSetjoyal, Quillen-equivalent
via triangulation.

What's an inner open box?
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Cubical quasicategories

A cubical quasicategory is X € cSet having fillers for inner open
boxes.

In particular, this lets us “compose” edges.

f
X———— =Y

10 / 14



Cubical quasicategories

A cubical quasicategory is X € cSet having fillers for inner open
boxes.

In particular, this lets us “compose” edges.

f
X——— =Y

11/ 14



The cubical Joyal model structure

Theorem (D.-Kapulkin-Lindsey-Sattler)

cSet carries a model structure:

» Cofibrations are monomorphisms;

» Fibrant objects are cubical quasicategories;

» Homotopy: geometric product with
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i. e. a homotopy of maps X = Y isH: KX =Y.
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Main result

Theorem (D.-Kapulkin-Lindsey-Sattler)

The adjunction T : cSet = sSet : U is a Quillen equivalence
between the Joyal and cubical Joyal model structures.

category \ theory | oo-groupoids | (oo, 1)-categories

sSet Quillen Joyal

cSet Grothendieck cubical Joyal
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Other results

» Two more models of (0o, 1)-categories: marked cubical sets
and structurally marked cubical sets.
» Theory of cones in cubical sets.

» Definitions of homotopy categories and mapping spaces for
cubical quasicategories, and characterization of equivalences
of cubical quasicategories in terms of these concepts.

» New proof of the analogous result for simplicial sets.
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