Cubical Joyal model structures: recent and ongoing developments

Brandon Doherty

Florida State University

December 2, 2023

Conclusions

Theorem

The category cSet of cubical sets, with or without connections, carries a model structure that presents the homotopy theory of $(\infty, 1)$ -categories, which is equivalent to the Joyal model structure via triangulation.

References

- ▶ D., Kapulkin, Lindsey, Sattler, Cubical models of (∞, 1)-categories, Mem. Amer. Math. Soc. (to appear), 2020.
- D., Cubical models of higher categories without connections, J. Pure Appl. Algebra, 227(9):107373, 2023.

Cubical sets

The **box category** \square :

• objects are $[1]^n = \{0 \le 1\}^n$;

morphisms are some subset of order-preserving maps.

Cubical sets are presheaves on \Box

$$cSet := Fun(\Box^{op}, Set),$$

and are pieced together from standard cubes \Box^n , $n \ge 0$:

Cubical sets

In this work, maps in \Box are generated by:

- face and degeneracy maps
- connections (max and min)

Cubical structure maps

Maps in \Box give rise to **structure maps** in a cubical set X.

Degeneracies $\sigma_i \colon X_n \to X_{n+1}$:

Think of degenerate edges as "identities".

Maps in \Box give rise to **structure maps** in a cubical set X.

Can view these as "extra degeneracies".

Inner open boxes

When cubical sets model $(\infty, 1)$ -categories, composition is represented by filling **inner open boxes**.

Take all faces of a cube but one, and make the **critical edge** degenerate.

Cubical quasicategories

A **cubical quasicategory** is $X \in cSet$ having fillers for inner open boxes.

In particular, this lets us "compose" edges.

Theorem (D.-Kapulkin-Lindsey-Sattler)

The category cSet (with or without connections) carries the **cubical Joyal model structure**, whose fibrant objects are the cubical quasicategories.

Comparing cSet and sSet: Triangulation

We define $T: cSet \rightarrow sSet$ by Kan extension:

T has a right adjoint U given by $(UX)_n = \operatorname{sSet}((\Delta^1)^n, X)$.

Theorem (D.-Kapulkin-Lindsey-Sattler)

 $T \dashv U$ is a Quillen equivalence between the cubical Joyal model structure on cSet with connections and the Joyal model structure on sSet.

The case without connections

Theorem (Cisinski)

The category cSet with or without connections admits a model structure which is Quillen equivalent via triangulation to the Quillen model structure on sSet.

Goal: Prove the Quillen equivalence in the $(\infty, 1)$ -case for cSet without connections.

In [D.-Kapulkin-Lindsey-Sattler] we showed $T \dashv U$ is a Quillen **adjunction** in this case.

Comparing cubical sets with and without connections

Let \Box_{\varnothing} denote the box category without connections, \Box_{\bullet} the box category with connections. Define $cSet_{\varnothing}, cSet_{\bullet}$ likewise.

Have an inclusion $i : \Box_{\varnothing} \hookrightarrow \Box_{\bullet}$.

Pre-composition gives i^* : cSet• \rightarrow cSet_{\varnothing}.

i* and its adjoints

*i** has both adjoints:

*i*₁X has the same non-degenerate cubes as X, plus free connections

- *i**X has the same cubes as X, but forgets connection structure
- Cubes of i_{*}X are cubes of X equipped with a choice of connections

i^* and triangulation

We have a commuting diagram of adjunctions:

Theorem (D.)

The adjunction $i_!$: $cSet_{\varnothing} \rightleftharpoons cSet_{\bullet}$: i^* is a Quillen equivalence between cubical Joyal model structures.

Corollary

The adjunction $T : cSet_{\emptyset} \rightleftharpoons sSet : U$ is a Quillen equivalence between the cubical Joyal and Joyal model structures.

The Quillen equivalence

Proof involves showing the unit $id \Rightarrow i^*i_!$ and counit $i_!i^* \Rightarrow id$ to be natural weak equivalences.

Key idea: cubical quasicategories in $cSet_{\varnothing}$ can be equipped with connections via open box filling.

E.g. for any 1-cube $x_0 \xrightarrow{x} x_1$ in a cubical quasicategory there is a 2-cube

which can be designated $x\gamma_{1,0}$.

Connections via open box filling

Consider the open box:

This is inner, hence has a filler ...

But the missing edge may not be x.

Connections via open box filling

To correct this, we consider a three-dimensional open box:

(Left face missing)

This is inner, hence has a filler – we designate its left face as $x\gamma_{1,0}$. Thus "cubical quasicategories have connections". In fact, **every cubical quasicategory in** cSet_{\emptyset} **is in the image of** *i*^{*}.

Other results

► Models of (∞, n)-categories: marked cubical sets with connections, Quillen equivalent to complicial sets for cubes with connections [D.-Kapulkin-Maehara] and without [D.].

Work in progress: cubical Joyal model structure for cubical sets with symmetries and diagonals.